
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

WHY IS AGILE DEVELOPMENT HARD? PAGE 6

PLUS...

Write Right
Java Faster

RETAILERS PLEASE DISPLAY
UNTIL SEPTEMBER 30, 2006

 JDJ.SYS-CON.COM VOL.11 ISSUE:7

No. 1 i-Technology Magazine in the World

A JNI-bridged Java
Desktop Application

Innovative Solutions for
Enterprise Developers

SEE PAGES 58-59
FOR DETAILS

SANTA CLARA CONVENTION CENTER
W W W . A J A X W O R L D E X P O . C O M

OCT 3-4
2 0 0 6

JDJad-Quest-0506.indd 1 4/20/06 10:51:53 AM

	 n one of my (several) former
professional lives, I used to pub-
lish books about the future, in-
cluding, for example, the world’s

first full-length book about groupware.
	 That was back in 1994 and the book
was called Groupware on the 21st Cen-
tury. If I’d been clairvoyant, I guess I
would have called it simply The Future
Is Google, but the Web hadn’t yet taken
off, let alone Google, Inc. – mainly be-
cause Sergey Brin and Larry Page were
both still only 21 years old.
	 Fast-forward 12 years and the land-
scape has changed so much. It turns out
the world was neither flat, nor round,
but Google-shaped. Because much of
what is said and done on the Web is cur-
rently said or done via Google.
	 What comes after Google? Where
will the Web, the Internet, the whole
nexus of telecommunications, i-Tech-
nology, and the quest for a better world
take us?
	 My strong sense is as follows: if Web
2.0, as the joke goes, is about how we
can make money out of Web 1.0, then
Web 3.0 is going to be about how we
can extract insight out of Web 2.0.
	 Those who know me professionally
– and a few have had to weather that
particular storm for well over a quarter
of a century already – will recognize
my (to them) familiar refrain: that
“insight capture” is the key to the 21st
century, just as it was the key to the
19th, or the 20th…or the 14th, or the
16th, for that matter.
	 Unless we can first capture and
thereafter harvest – asynchronously, as
and when it is most needed and most
relevant – the collective wisdom of our
time, how can it be deemed “wisdom”?
None of us has time any longer to at-
tend all the conferences we’d like to, or
to join all the societies or support all the
causes that appeal to us for attention,
time, and money. What we need above
all is to be able to act co-intelligently.
While co-intelligence is what we need,
our actual opportunities for meaning-
fully interacting with our peers are in

some respects growing in inverse pro-
portion to the variety of ways in which
we can execute the interaction.
	 We send e-mails about phone calls,
make phone calls about e-mails, send
IM messages about videos, write blogs
about IM messaging…and send videos
about there being too many ways to
communicate – because, let’s face it, do
we have time to keep up with each other’s
communication stream? On a good day,
barely; on a regular day, heck no!
	 Welcome to the World Beyond Google.
In this post-Google world that I am
positing, the responsibility for extract-
ing the good from the rich new seams
of inter-communication would pass in
part from the individual to the collec-
tive – not quite the “Wisdom of Crowds”
idea, which is more like a “broadband”
version of this vision, but certainly the
wisdom of many, on the basis of “none
of us is a smart as all of us.”
	 How does it work, co-intelligence?
It’s almost easier to say how it doesn’t
work. Co-intelligence begins when
trying to outsmart the other guy ends.
When we are proud to bring our
pebble to the building site and help
build the tower of perspective; we don’t
need to insist on being the chief archi-
tect if all that the titular folly-swaddle
achieves is that what gets built instead
is not a tower but a small woodshed.
	 Small is powerful, less is more. We
need fewer ways to communicate, not
more, and better ways to distill what’s
being communicated. There will most
certainly be Life Beyond Google, but
it will be insightful only if we plan for
insight right now, in every piece of
software we develop and every single
communication and/or networking
application that we build.
	 Social networking without some
kind of insight functionality is like
mashing up all the world’s transport
systems – the road network, the rail-
roads, the navigable rivers, the flight
paths – and then hoping it will work
without the simultaneous invention
and development of maps.

From the Group Publisher

Is There Life
Beyond Google?

	 Editorial Board	

	 Java EE Editor:	 Yakov Fain

 	 Desktop Java Editor:	 Joe Winchester

	 Eclipse Editor:	 Bill Dudney

	 Enterprise Editor:	 Ajit Sagar

	 Java ME Editor:	 Michael Yuan

	 Back Page Editor:	 Jason Bell

	 Contributing Editor:	 Calvin Austin

	 Contributing Editor:	 Rick Hightower

	 Contributing Editor:	 Tilak Mitra

	 Founding Editor:	 Sean Rhody

Production
	 Associate Art Director:	 Tami Lima
	 Executive Editor:	 Nancy Valentine
	 Research Editor:	 Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON at

conferences and trade

shows, speaking to

technology audiences

both in

North America and

overseas. jeremy@
sys-con.com

Jeremy Geelan
Group Publisher

I

�July 2006JDJ.SYS-CON.com

Altova® StyleVision® 2006 – The ultimate e-forms, DB report and stylesheet designer.

Transform your
 appearance

Outfi t yourself with StyleVision® 2006,
and fashion multiple outputs from a

single stylesheet design.

New in Version 2006:
l Vastly enhanced user interface and usability features

l Support for multiple data sources in one output design
l Cascading stylesheets (CSS) for use in transforming

 XML and databases to HTML
l JavaScript editing and embedding in HTML designs

Altova StyleVision 2006, the ultimate e-forms, DB
report, and stylesheet designer, lets you transform

XML and database content into eye-catching
HTML, PDF, and Word/RTF output all from

the same design. Also use it to create
intuitive electronic forms for Authentic®

2006, Altova’s powerful, FREE XML
and database content editor that

enables business personnel to view
and edit data without being exposed
to the underlying technology.
Get more out of your designs!

Download StyleVision® 2006
and Authentic® 2006 today:
www.altova.com

StyleAuth_JDJ.indd 1 5/24/2006 2:45:41 PM

JuLY 2006 VOLUME:11 ISSUE:7

contents

JDJ (ISSN#1087-6944) is published monthly (12 times
a year) for $69.99 by SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645. Periodicals
postage rates are paid at Montvale, NJ 07645 and

additional mailing offices. Postmaster: Send address
changes to: JDJ, SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645.

From the Group Publisher

Is There Life Beyond Google?
by Jeremy Geelan

. .3
Viewpoint

Why Is Agile Development Hard?
by Jon Kern

. .6
Eclipse Update
Innovative Solutions for
Enterprise Developers
Interview with Mike Milinkovich,

executive director of the Eclipse Foundation

. .8
Open Source

A Look at the Eclipse
Callisto Release
Providing a more transparent and predictable

development cycle

by Chris Aniszcyk & Gunnar Wagenknecht

. . .10

Security

Web Services Security in Java EE
The present and future

by Andrei Iltchenko

. .24
JSF
By Invitation Only!
Effective page authorization in JavaServer Faces

by Frank Nimphius & Duncan Mills

. .32
Plug-ins

Configuring the
WebLogic-Eclipse Plug-in
Designed to run the WebLogic Server

from the Eclipse IDE

by Deepak Vohra and Ajay Vohra

. .38
Development

Java Techie to Manager
You’ve got the job now what do you do?

by Benjamin Garbers

. .40

Desktop Java Viewpoint

Who does Business Logic?
by Joe Winchester

. .46
Open Source

Eclipse
A general purpose platform

. .48
Product Review

Mindreef SOAPscope Server
The rare distributed development environment

by Brian Barbash

. .60

JSR Watch

The 4th JCP Program Annual
Awards Runners-Up
by Onno Kluyt

. .62

14by Anil Hemrajani

42
Write Right
Java Faster

by Richard Cariens & John Evans

JDJ Cover Story Features

A JNI - bridged Java
Desktop Application

by Mário de Sá Vera

54

Eclipse
&Hibernate

withSpring,

�July 2006JDJ.SYS-CON.com

bet you thought agile development was
supposed to be easier than a traditional,
prescriptive process! That I would wax evan-
gelical that agile development is the answer

to everything, and it simplifies your life. Yeah,
just like UML and model-driven architecture and
XML and SOA and Web services are silver bullets.
Uh-huh, r-i-g-h-t.
	 If you aren’t familiar with agile development,
you can check out our manifesto here: http://
www.agilemanifesto.org/. You can also learn
more here: http://en.wikipedia.org/wiki/Ag-
ile_software_development. The difficulty with
“agile development” is that it is “in the eye of the
beholder.” That is, even a highly regulated, con-
strained application can be conducted in an agile
manner. That manner will be radically different
from the way a five-member team might ap-
proach building a small desktop software product
that they want to sell. Both projects can be agile,
and therein lies some of the issues that make agile
seem “hard.”
	 Why, then, is agile development hard?
	 It might not be so much that agile develop-
ment is hard, per se, depending on your perspec-
tive. The reason I give for agile development be-
ing more of a challenge for many teams is simple:

YOU HAVE TO USE YOUR BRAIN!

	 No, I don’t mean to infer that you don’t
normally use your brain. However, in a highly
prescriptive process, it is easy to fall into a trap
of doing an activity because… well, just because!
Typical reasons are that a specific set of steps are
mandated by a process, possibly making sense in
some projects, not in others. But often, the pro-
cess grows old, people no longer remember why
they are doing a specific task, but do it anyway.
Folks get comfortable building some document
without ever asking the recipient if it is enough,
too much, useless, perfect.

– Don’t Mistake Activity for Progress

	 Developers often jump into the fray by “cherry-
picking” specific fun stories and sometimes
missing the big picture. For an app that needs to
message another app and then do some crunch-
ing, I have seen developers working on everything
but the core system development needs: the
messaging or shelling out of one app to speak to
another app. When I asked if they got the basics
working yet and are now discussing the pretty
frills, they looked around, kind of sheepishly. “No,

we don’t have the parent app able to message our
part yet.” If you use your brain and step back a
bit, you can see that nothing else matters.
	 Despite making progress on “stories” they
actually had no meaningful progress. Remember,
if you can’t see it working, it doesn’t exist!

– Show Me Working Features

	 Yeah, yeah, yeah, I know, someone didn’t
prioritize the stories properly. But, you certainly
cannot expect a “customer” to figure out that
some weird technical messaging thingy had to
be in place first. The customers better only talk
about the business and features that are (gener-
ally) devoid of technology words.
	 Development teams have to think more broad-
ly than just coding. If a team understands that the
client needs to know about some aspects of the
technology that have to be implemented before
anything else matters, this should be brought to
their attention.
	 Development teams also need to help with the
project management aspects. Yes, that’s right. You
need to learn how to say “No!” – in a gentle man-
ner, of course.
	 “So, can we add some more features to this
iteration?”
	 “Uh, since we are three days to iteration
‘pencil’s down,’ let me think. NO! It has to wait
until the next iteration.”
	 After all, if you know in your gut that there is no
way for a disruptive request to be accomplished,
why bother trying? You should always maintain
your iteration delivery schedule, slipping features
instead of dates. You should always maintain your
good habits. Someone has to be the adult ;=)

– Learn to Say “No”

	 In agile development, you (and everyone else)
are charged with the rather difficult responsibility
of always challenging yourself to ensure you are
doing the smartest thing possible that will bring
about the best solution for the current project
(and within its context).
	 You need to set up your agile team for “run-
ning fast” through each iteration’s features. To
start with, I like to model the problem domain to
enough of a level of understanding from which:
•	 Requirements/features can be written using a

consistent language
•	 Enough of an object model exists to anchor

the coding

Viewpoint

Why Is Agile
Development Hard?

President and CEO:

	 Fuat Kircaali	 fuat@sys-con.com

Group Publisher:

	 Jeremy Geelan	 jeremy@sys-con.com

Advertising

Senior Vice President, Sales and Marketing:

	 Carmen Gonzalez	 carmen@sys-con.com

Vice President, Sales and Marketing:

	 Miles Silverman	 miles@sys-con.com

Advertising Sales Director:

	 Robyn Forma	 robyn@sys-con.com

Advertising Sales Manager:

	 Megan Mussa	 megan@sys-con.com

Associate Sales Manager:

Kerry Mealia kerry@sys-con.com

Lauren Orsi lauren@sys-con.com

Editorial

Executive Editor:

	 Nancy Valentine	 nancy@sys-con.com

Production

Lead Designer:

	 Louis F. Cuffari	 louis@sys-con.com

Art Director:

	 Alex Botero	 alex@sys-con.com

Associate Art Directors:

	 Abraham Addo	 abraham@sys-con.com

	 Tami Lima	 tami@sys-con.com

Web Services

Information Systems Consultant:

	 Robert Diamond	 robert@sys-con.com

Web Designers:

	 Stephen Kilmurray	 stephen@sys-con.com

	 Wayne Uffleman	 wayne@sys-con.com

Accounting

Financial Analyst:

	 Joan LaRose	 joan@sys-con.com

Accounts Payable:

	 Betty White	 betty@sys-con.com

Accounts Receivable:

	 Gail Naples 	 gailn@sys-con.com

 Customer Relations

Circulation Service Coordinator:

	 Edna Earle Russell	 edna@sys-con.com

JDJ Store Manager:

	 Brunilda Staropoli	 bruni@sys-con.com

Jon Kern

I

– continued on page 10

JDJ.SYS-CON.com�	 July 2006

JDJ: What’s the state of the RCP – are “rich clients”
Eclipse’s focal point for the future of software
development?
Milinkovich: Eclipse RCP is a very important strategy
and future for us. We are seeing a lot of uptake,
in particular ISVs, from organizations adopting
RCP as the platform for building their next-gen-
eration products. That being said, Eclipse as a
community is focused on a number of different
areas including providing innovative solutions for
enterprise Java developers. In addition, we have a
leadership position in providing the platform for
embedded tools development and our SOA and
ALM initiatives are coming on strong.

JDJ: How does portability between platforms trans-
late into value for enterprises, assuming that this
is what will drive RCP adoption.
Milinkovich: The freedom of choice is the value RCP is
providing enterprises and ISVs. If you are building
for the .NET platform, you are pretty much com-
mitted to deploying on Windows. Eclipse RCP al-
lows you to choose now or in the future the ability
deploy on Windows, Mac, Linux, Solaris, or HP-UX,
and we are working on embedded platforms like
the Nokia Series 60. This is pretty compelling,
especially if you are an ISV and want to have a
solution for potential Mac and Linux customers.

JDJ: Is SOA still a part of the Eclipse Foundation’s
vision of the future?
Milinkovich: Absolutely. We have a top-level project
called the SOA Tools Platform that is building the
frameworks and exemplary tools that enable the
design, configuration, assembly, deployment,
monitoring, and management of software designed
around a service-oriented architecture (SOA).
The interesting thing about this project is that the
companies involved in the SCA are also involved in
the Eclipse SOA Tools project, so there is going to be
very good symmetry between these two initiatives.

JDJ: How about Ajax? Where does that fit in? The
Eclipse Foundation joined OpenAjax right from
the get-go, for example.
Milinkovich: Ajax is a natural evolution for Eclipse.
Lots of people equate Eclipse with being Java
but Eclipse is a lot more than just Java. Eclipse
is really about being a platform for building and
integrating tools. In fact ,we have counted over
20 different language IDEs built on Eclipse.

	 So developing an Ajax tool chain and frame-
works is pretty natural for us. Specifically, we have
an Ajax Toolkit Framework (ATF) project and an
Ajax framework project called Rich Ajax Platform
(RAP). The other interesting thing is that if you
look at the wider Ajax and Rich Internet Appli-
cation (RIA) community, everyone seems to be
building their tools on Eclipse – Adobe, Nexaweb,
and Laszlo to name just a few.

JDJ: Sun’s been rumbling on about possibly join-
ing Eclipse at long last if only you’d ditch the
confrontational name. (1) Would you ever change
the name and (2) would Sun’s joining mean the
end of NetBeans?
Milinkovich: I really believe there are two platforms
now: Eclipse and Visual Studio .NET. I have said
this before; we would love to have Sun join Eclipse.
There is lots of room for NetBeans and I can easily
see it thriving on the Eclipse platform. Changing
the name is really not an option any longer.

JDJ: What do you think are the top three open
source issues right now?
Milinkovich: I used to be a product manager in a
former life, and to me what the open source
community as a whole needs to think of is how
to provide enterprises with the “whole prod-
uct.” What I mean by that is just providing the
executable bits is not enough. Enterprises need
services, technical support, training, knowledge
transfer, etc., as well as the source and binary
code. In other words, the open source communi-
ty in its entirety will need to provide all of these
various pieces to enterprises before becoming
truly mainstream.
	 Along with this, enterprises want to source
their technology from reliable and predictable
providers. Open source communities need to
demonstrate that they can be transparent and
predictable in their technology roadmaps. This
is one area that we at Eclipse spend a great deal
of time and effort working on.
	 The third area is that the open source com-
munity needs to figure out how to inspire enter-
prises to contribute back to the community. Not
out of altruism, but because the corporations are
shown that there are compelling business rea-
sons to do so. To me, that seems like one of the
obvious paths for both growth and collaboration
by the open source community.

Eclipse Update

Innovative Solutions for
Enterprise Developers

Interview with Mike Milinkovich, executive
director of the Eclipse Foundation

•	 Enough complexity has been uncov-
ered to make the cost/time estimate
defensible

	 In addition, you need to understand the
architectural approach (not to mention
coding guidelines). You can slowly arrive
at the ultimate architecture and call it
refactoring. But at what cost? I like to get
the bulk of the architecture design/build-
ing work out of the way before starting the
first iteration. Of course, for some apps,
you may already have the architecture
style predetermined.
	 I like to ensure the team can hit the
ground running with a list of features in
hand, architecture, coding guidelines,
automated build scripts, and a domain
model from which to hang code.
	 Sure you can discover all of this piece-
meal as you go along, but that is usually
slower and less efficient than doing some
work up-front to lay the groundwork. No, I
am not talking about “Big Stuff Up Front”
(BDUF/BRUF) type of an approach. I
am talking about using your brain. Do
enough up-front work to enable running
fast (even with scissors). Maybe: Just Enuf
Design Up-front (JEDI – if I substitute
“Initially” <g>).

– You Must Lay the Proper
Groundwork to Be Agile

	
By a few iterations in, if you are not rip-
ping through the feature list/user stories
almost faster than they can be compiled,
you are not yet performing at a truly agile
level. If it is “disruptive” that a customer
changes the stories scheduled for the next
iteration because of changing priorities,
you are not yet performing at a truly agile
level. If you and your team are not con-
stantly using your brains, you are not yet
in the agile state of mind.
	 – Agile Is a State of Mind!

	 Post any comments on my blog: http://
www.compuware.com/blogs/jkern/

Jon Kern is a software engineering evangelist,

Agile Manifesto co-author, speaker, and author. His

experience is wide-ranging across varied problem

domains and technology platforms. From jet engine

R&D (he’s an aerospace engineer, after all) to real-

time flight simulator design and development, from

TogetherSoft’s and OptimalJ’s commercially success-

ful modeling tools to building IBM’s

Manufacturing Execution System software –

Jon has seen and done a lot in his 20 years.

jon.kern@compuware.com

– continued from page 6

�	 July 2006 JDJ.SYS-CON.com

Massive scalability on minimal hardware

Caché is the first multidimensional database for transaction processing and real-time
analytics. Its post-relational technology combines robust objects and robust SQL, thus
eliminating object-relational mapping. It delivers massive scalability on minimal hardware,
requires little administration, and incorporates a rapid application development environment.

These innovations mean faster time-to-market, lower cost of operations, and higher
application performance. We back these claims with this money-back guarantee: Buy Caché
for new application development, and for up to one year you can return the license for a full
refund if you are unhappy for any reason.* Caché is available for Unix, Linux, Windows, Mac
OS X, and OpenVMS – and it's deployed on more than 100,000 systems ranging from two to
over 50,000 users. We are InterSystems, a global software company with a track record of
innovation for more than 25 years.

The Objects Of Your Desire.

Rapid development with robust objects Lightning speed with a multidimensional engine

Easy database administration

Try an innovative database for free: Download a fully functional, non-expiring copy of Caché, or request it on CD, at www.InterSystems.com/Cache17P
* Read about our money-back guarantee at the web page shown above.

© 2006 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 6-06 CacheInno17JDJ

CacheInno17 JDJ.qxp 6/15/06 2:22 PM Page 1

allisto is the simultaneous
release of 10 major Eclipse
projects at the same time. An
important thing to note about

Callisto is that even though it’s the
simultaneous release of 10 projects,
it doesn’t mean these projects are
unified. Each one remains a separate
Open Source project operating with
its own project leadership, its own
committers, and its own development
plan. In the end, Callisto is about
improving the productivity of develop-
ers working on top of Eclipse projects
by providing a more transparent and
predictable development cycle.

A Quick Tour of Callisto’s Projects
	 In this article, we ‘ll go through each
of the Callisto components. We’ll give
a brief overview of each and quote
an Eclipse committer about what’s
exciting about his component in the
Callisto release. Then we’ll discuss
some of the challenges that faced Cal-
listo and conclude with the advantages
gained by adopting Callisto. As you
soak in what the committers have to
say, remember that they are from the
various corporations working together
to make Callisto a reality.

Platform
	 The Eclipse Platform component
(http://www.eclipse.org/platform) is
the heart of Eclipse and has three main
pieces:

•	 Java Development Tools (JDT)
– http://www.eclipse.org/jdt - When
most people think of Eclipse, this is
the first component they think of.
Eclipse provides a world-class Java
development environment.

•	 User Interface/Core Tooling – This
piece encompasses many smaller

components in the Platform. It’s
responsible for all the visuals you
see in Eclipse and features like team
integration and Ant support.

•	 Plug-in Development Environment
(PDE) – http://www.eclipse.org/pde
- Have you ever used a wizard in
Eclipse to create an Eclipse plug-in?
If you have, you used the PDE. It’s
responsible for all the tooling in
plug-in development.

	 Since it’s hard to track down all the
committers for each of the small Plat-
form projects, we’ll focus on what PDE
has to offer Callisto:

	 “For the Callisto release, PDE
provides comprehensive OSGi tooling,
which would make it an ideal develop-
ment environment for component
programming, not just Eclipse plug-in
development. Other noteworthy
features include quick fixes in plug-in
manifest files, NLS tooling, and tighter
integration with JDT via participation
in search and refactoring.”

- Wassim Melhem,

PDE lead, IBM

C/C++ Development Tools (CDT)
http://www.eclipse.org/cdt
	 Did you know Eclipse isn’t just for
Java development? The CDT project
aims to bring a fully functional C and
C++ development environment to the
Eclipse Platform. One should note that
CDT can scale. A famous CDT demo
is to import the Mozilla code base and
use CDT to develop it.

“The CDT brings Callisto a develop-
ment environment for writing C and
C++ programs. The JDT sets a high bar
as far as Eclipse IDEs go and we are
constantly working in catch-up mode.

For Callisto, the CDT provides an editor
with all your regular text editor features
such as language-specific keyword
highlighting and content assist. It also
provides an index of the user’s code to
provide search and code navigation
features. There’s also a framework for
integrating build tools and debuggers
to complete the edit-build-debug cycle.
In this release, we’ve focused on a faster,
more scalable indexing framework
as well as a flexible build system that
allows for per-resource builds as well
as a new experimental internal builder
that eliminates the need for MAKE
files. We also have the beginnings of a
framework for supporting additional
compiled languages such as Fortran by
the Photran project and hopefully more
such as C# and Ada in the future.

- Doug Schaefer,

CDT lead, QNX Software Systems

Business Intelligence &
Reporting Tools (BIRT
 http://www.eclipse.org/birt
	 The BIRT project strives to bring a
Eclipse-based reporting system that
integrates with your application to
produce compelling reports for both
Web and PDF. BIRT provides core
reporting features such as a graphi-
cal report designer, data access, and
scripting support. BIRT reminds me of
Crystal Reports or JasperReports, but
tightly integrated with Eclipse.

“With the Callisto release, BIRT ex-
pands on the themes of scaling, broader
appeal, and simplicity. Some of the
new features include Re-portlet sup-
port, which allows elements of a BIRT
report to be rendered as partial HTML
pages for better integration into dash
boarding-type applications, joined
datasets for combining disperse data

Open Source

by Chris Aniszczyk
& Gunnar Wagenknecht

A Look at the Eclipse
Callisto Release

C

Providing a more transparent and predictable development cycle

JDJ.SYS-CON.com10	 July 2006

sources into a single table, improved
DTP integration, parameterized XML
data sources, the ability to template
an existing report design, and several
chart enhancements. BIRT 2.1 will also
provide better tooling to promote devel-
oped reports and ancillary files between
environments.

- Jason Weatherby, BIRT evangelist,

 Actuate Corporation

Data Tools Platform (DTP)
http://www.eclipse.org/dtp
	 DTP project includes extensible
frameworks and exemplary tools
around data-centric technologies. DTP
provides data management frame-
works and tools not biased toward
any vendor. If you plan to work with
databases and use Eclipse, this should
be your first stop for database tooling.

“The Eclipse Data Tools Platform (DTP)
brings a number of key data-centric
frameworks and tools to the Callisto
feature set. Using these DTP frame-
works and the examples provided for
Apache Derby, the extender community
can quickly achieve a high-functional-
ity baseline working with heteroge-
neous data sources. Once this baseline
is attained, specialized offerings for
data-centric applications can then be
created in the familiar Eclipse Plug-in
Development Environment (PDE),
allowing developers to leverage existing
skills for the data domain.”

- John Graham, DTP lead, Sybase Corporation

Eclipse Modeling Framework (EMF)
http://www.eclipse.org/emf
	 EMF is a modeling framework and
code generation tool for building tools
and other applications based on a
structured model. To put it simply, EMF
lets you build models quickly by taking
advantage of EMF facilities. For example,
one feature EMF provides is support for
persisting models to XML (there are op-
tions to persist models to databases too).

“The Eclipse Modeling Framework pro-
vides powerful generative and runtime
capabilities for applications based on
structured data models. From a simple
class diagram or XML Schema, you can
generate a complete Java implementa-
tion of the model, along with an editor
for it, and take advantage of EMF’s
facilities for persistence, notification,
validation, and change recording in
your application. Callisto includes EMF
2.2, which introduces many exciting

new features: a simplified XMLProcessor
API for XML persistence; cross-resource
containment support; new code genera-
tion patterns, allowing, for instance, for
all signs of EMF to be suppressed from
generated interfaces, or for no inter-
faces to be generated at all; encryption
support in resources; improved XML
Schema generation and round-tripping;
an extensible model exporter tool; an
improved, extensible code generator;
and various performance improvements
and usability enhancements.

- David Steinberg, EMF committer, IBM

Graphical Editing Framework (GEF)
http://www.eclipse.org/gef
	 GEF serves as the base for graphi-
cal applications in Eclipse. It includes
Draw2D (similar to Java2D), which is
a lightweight graphical toolkit built on
SWT. GEF itself is a framework that ex-
tends the Model-View-Controller para-
digm to graphical editors. GEF brings
your own model to the framework and
provides facilities that take advantage
of Draw2D to paint your figures.

“[For the Callisto release] GEF 3.2 is
essentially a maintenance release in
terms of features and bug fixes. Some
minor features that were integrated
were for supporting animated layout
and general fixes to direct graph layout
algorithm...”

- Steven Shaw, GEF/GMF committer, IBM

Graphical Modeling Framework (GMF)
http://www.eclipse.org/gmf
	 GMF is a new Eclipse project that
aims to bridge EMF and GEF to allow
for the generation of graphical editors.

“GMF brings Callisto a more efficient
means for Eclipse developers to create
graphical editors based on EMF and
GEF. Based on model-driven develop-
ment techniques, GMF leverages a se-
ries of models to generate editors target-
ing the feature-rich GMF diagramming
runtime, which can also be used in the
absence of the generative framework
for the creation of high-quality editors.
Follow the GMF Tutorial cheat sheet
and online tutorial to get started.”

- Richard Gronback, GMF lead, Borland

Test & Performance Tools
Platform (TPTP)
http://www.eclipse.org/tptp
	 TPTP provides an open platform
supplying powerful frameworks and
services that allow software developers

to build unique test and performance
tools, both Open Source and commer-
cial, that can be easily integrated with
the platform and with other tools. The
platform supports a broad spectrum
of computing systems including em-
bedded, standalone, enterprise, and
high-performance and will continue
to expand support to encompass the
widest possible range of systems.

“TPTP provides a rich set of test, profil-
ing, and monitoring tools. However its
true value can only be realized by being
part of a core typical user use case. By
integrating with the WTP project and
providing a ‘profile on server’ action
TPTP becomes an easy link to collecting
and analyzing your Web application
performance characteristics. By further
providing the ability to function and
load test based on http requests TPTP
helps the developer prove the quality of
the Web application. Finally by provid-
ing customized extended reporting of
the rich data TPTP collects with the use
of BIRT the user can get the test and
performance data they want and need
to best manage their own project.

- Harm Sluiman, TPTP committer, IBM

WebTools Platform (WTP)
http://www.eclipse.org/webtools
	 The WTP Project extends the Eclipse
Platform with tools for developing
J2EE Web applications. The WTP
project includes source editors for
HTML, JavaScript, CSS, JSP, SQL, XML,
DTD, XSD, and WSDL; graphical edi-
tors for XSD and WSDL; J2EE project
natures, builders, and models, and a
J2EE navigator; a Web Service wizard
and explorer, and WS-I Test Tools; and
database access and query tools and
models.

“WTP’s 1.5 release in the Callisto train
will include several new features and a
number of stability and performance
enhancements. Users of WTP Web
Services will appreciate the upgrade to
Axis 1.3 and streamlined Web Service
and client wizards. XML Schema and
WSDL graphical views have also been
revamped to make them easier to
navigate and read. WTP tackled some
major infrastructure work in the Cal-
listo release, moving to the platform’s
common navigator and undo stacks.
The tabbed property support is also
transitioning from WTP-only to the
platform level in this release. Finally,

11July 2006JDJ.SYS-CON.com

the Dali and JSF projects are planning
to do a technology preview around the
Callisto timeframe and will provide
some exciting ‘first looks’ at Java EE 5
tooling support that will preview sup-
port in WTP 2.0.”

 - Tim Wagner, WTP PMC lead, BEA

Visual Editor Project (VE)
http://www.eclipse.org/ve
	 Ever wondered if there was a way to
create user interfaces visually, using
the simple semantics of drag-and-
drop? The Eclipse project provides VE,
which is a open development platform
for supplying frameworks to create
GUI builders. VE has two exemplary
implementations of Swing/JFC and
SWT/RCP.

“The Visual Editor project (http://www.
eclipse.org/vep/) adds the ability to
visually develop SWT and Swing user
interfaces in Callisto. The main focus of
this release was to add initial support
for creating Rich Client Platform (RCP)
components with the VE. Towards that
goal we’ve added: the ability to develop
Views and Editors visually, support for
the Forms UI toolkit, and the ability to
work with JFace viewers. Other notable
new features in this release include sig-
nificantly enhanced tooling for SWT’s
GridLayout and support for VE on the
Mac OS X platform.”

- Jeff Myers, VE committer, IBM

Callisto’s Challenges
	 There are two main challenges
with Callisto. The first one and for
many people the most obvious one is
developing Callisto. Aligning 10 large
projects for simultaneous release is
very challenging. But once you actu-

ally get the release, you have to deliver
it and that’s a challenge on its own.
	 The method of choice for deliver-
ing Callisto is the Eclipse built-in
update mechanism. So you only
have to download the Eclipse
Platform binary for your system
and then you start Eclipse, use the
Update Manager to visit the Callisto
Update Site, and select the Callisto
features you’d like to have installed
in your environment. The Eclipse
Update Manager will do the rest for
you.
	 You can imagine that this will
put a burden on a single update
site (in terms of bandwidth use). In
Eclipse 3.2, the Update Manager and
the Eclipse.org infrastructure were
enhanced to deliver Callisto. The goal
for the Update Manager was to reduce
the volume of data that’s transferred
and the goal for the Eclipse.org infra-
structure was to create a reliable mir-
roring story for the Callisto Update
Site.

Callisto’s Advantages
	 Callisto brings several advantages to
users and plug-in developers (adopt-
ers) of Callisto projects. Let’s start with
the user’s perspective.

The User’s Perspective
	 From the user’s perspective Callisto
radically changes the way Eclipse and
the participating Eclipse projects get
on the desktop. It takes away the need
to read through the requirements
sections and collect them manually
from several download pages. You just
download one Platform binary and
select your desired projects from the
Callisto Update Site after installing and
starting the Platform binary.

Q: Which projects does WTP depend
on?
A: Who cares. The Eclipse Update Man-
ager will handle this.

	 Callisto also has another great
advantage for Eclipse users. It creates
some kind of accountability for all par-
ticipating projects and their commit-
ters. Because Callisto creates a refer-
ence platform of Eclipse projects that
are intended to work together. And
if they don’t now it’s easier to report
cross-project issues because you only
need to reference the Callisto platform
instead of collecting all dependencies.

The Developer’s Perspective
	 From a developer and adopter’s
perspective, Callisto introduces stabil-
ity (in terms of dependencies and
investments). Before Callisto, it was
up to you to select the projects you’d
like to depend on. But often the result
was disappointing because of some
incompatible dependency conflicts.
Now with Callisto the dependencies
are clearly defined.
	 With clearly defined dependencies
you get a target platform that will be
valid and current for a long time. So
Callisto also ensures that the invest-
ment you put in your adoptions are
well spent in the long term.

Conclusion
	 On the whole, we hope you enjoyed
this quick tour of Callisto and some of
the challenges Callisto faced. We think
Callisto will make it easier for end us-
ers to tailor their Eclipse experience by
selecting what they want included in
their Eclipse installation. Now, the only
logical thing to do is give Callisto a try.
See http://www.eclipse.org/callisto.

Open Source

“From the user’s perspective Callisto
radically changes the way Eclipse

and the participating Eclipse
projects get on the desktop”

JDJ.SYS-CON.com12	 July 2006

fter getting a head of gray hairs and a quickly
receding hairline, I have learned that the simplest
solutions are often the best. Having worked with
Java since 1995 and various software development
lifecycle methodologies over the years, I have seen

things grow complex in these areas. Thanks to some new
lighter-weight Java tools and agile methods, I can provide a
fresh perspective on developing Java applications in an agile
manner.
	 This article is different from typical Java articles for two
reasons. First, instead of providing in-depth details on some
API or cool tool, it provides a roadmap for building enter-
prise-class Java applications using agile methods and plain
old Java objects (POJOs). Second, it covers a lot of ground,

from conceptualization through deployment, so for the
sake of brevity, there are minimal code excerpts; however,
there’s a completely functional sample timesheet application
called Time Expression (with source code) built using Spring,
Hibernate, Junit, and Ant available at http://visualpatterns.
com/resources.jsp.
	 We have a lot to cover so let’s get started.

Agile Manifesto
	 In 2001, 17 software experts (including Martin Fowler,
Kent Beck, and Jon Kern) got together to discuss lightweight
approaches to software development; they jointly defined the
term agile. The outcome of this was the “Manifesto for Agile
Software Development,” a set of values and principles for

A roadmap for building enterprise-class
applications using agile methods and POJOs

by Anil Hemrajani

Eclipse
&Hibernate

withSpring,

A

JDJ.SYS-CON.com14	 July 2006

15July 2006JDJ.SYS-CON.com

these agile methods.
	 The term agile incorporates a wide range of methods; some
of them include Extreme Programming (XP), Scrum, Feature
Driven Development, Agile Modeling, and Crystal. Many
methodologies tend to include both process and modeling
since they often go hand-in-hand; we will look at both next.
For details on the Agile Manifesto and various agile methods,
visit the agilemanifesto.org and agilealliance.org Web sites.

Agile Processes
	 One of easiest agile processes to understand is Scrum.
While XP tends to steal the limelight in the agile community,
it’s a bit more involved than Scrum. However, the two are
highly complementary since XP provides a set of excellent
engineering practices whereas Scrum is more about product/
project management. In fact, these days I tend to recommend
becoming “agile” by bringing in Scrum first, then adding XP
practices one at a time, as and when needed since moving
entirely to XP-based development (from waterfall) is a rude
awakening for many organizations and requires a fundamen-
tal mind shift that many projects aren’t ready for.
	 So, how does Scrum work? Simple. We gather a list of new
features or change requests for an application in a product
backlog. For our sample application, Time Expression, these
could include:
•	 Hourly employees will be able to sign in to a Web applica-

tion and enter their hours for each day of a given week.
•	 The employee’s manager must approve the timesheet.
•	 After a timesheet is approved or disapproved, notification

is sent to the employee indicating the updated status of
the timesheet.

•	 And so on…

	 From here, we simply take the highest-priority features,
move them to a sprint backlog, and implement them in one-
month (or shorter) iterations called sprints, and continue hav-
ing monthly sprints till all the features are implemented. Each
sprint (or iteration) contains the entire software lifecycle, in
other words, detailed requirements/analysis, design, coding,
unit/acceptance testing, and deployment of production-ready
code. Scrum also suggests having a planning meeting at the
beginning of a sprint and a review at the end of the sprint to
discuss lessons learned or the next set of features to imple-
ment in the following sprint. Other than that, we have a short
daily meeting (say, 15 minutes) to discuss the project’s status.
Figure 1 depicts the Scrum process. Visit controlchaos.com for
details on Scrum.
	 A common theme of agile processes is iterative develop-
ment. For example, XP works like Scrum, however, it uses the
concept of quarterly releases with weekly iterations as shown
in Figure 2. Also the features are provided in the form of user
stories, typically written by the customer using one to three
lines to describe the feature. My explanation of XP is overly
simplified; there’s a lot more to it such as pair programming,
sit together, and continuous build. Visit extremeprogram-
ming.org for details on XP.
	 So now we’ve looked at two agile processes, Scrum and XP.

 Figure 1 Scrum (Source: mountaingoatsoftware.com)

 Figure 2

 Figure 3

 Figure 4

 Figure 5

 Figure 6

JDJ.SYS-CON.com16	 July 2006

These help in gathering user feature requests and overall
project management. However, as developers, we need to
implement features by engineering them into software appli-
cations, so let’s look at agile modeling techniques next, which
can help us bridge the gap between user requirements and
coding.

Agile Design
	 According to thefreedictionary.com, a model is “a prelimi-
nary work or construction that serves as a plan from which
a final product is to be made...used in testing or perfecting a
final product.” So here I’ll use the word “model” to describe
diagrams and other artifacts.

Agile Model-Driven Development
	 Agile Model-Driven Development (AMDD) created by
Scott Ambler provides guidelines for effective modeling.
Instead of creating extensive models, AMDD recommends
creating “good enough” models. One of my favorite Scott
quotes is “your goal is to build a shared understanding, it isn’t
to write detailed documentation.”
	 AMDD suggests two categories of models, requirements
and architecture. Requirements models could include a
domain model (Figure 3), usage models such as user stories
or use cases (Figure 4), and UI models such as prototypes and
flow map (Figures 5 and 6).
	 Architecture models could include a freeform model like
the one shown in Figure 7.
	 There really isn’t a whole lot more to AMDD since it pro-
vides minimal guidelines for agile modeling. Visit agilemod-
eling.com for more details.

Agile Draw
	 Before moving to the next topic, let me briefly mention a
new and elegantly simple technique called Agile Draw, which
was used to draw Figures 3-7. This technique provides an
alternative to the heavy-handed Unified Modeling Language
(UML) but can also be used to complement UML. Agile Draw
provides minimum guidelines for modeling and additional
guidelines for adding appeal to these models using graphic
design concepts. The core concepts behind Agile Draw
include four basic components that make it a virtually nota-
tion-free modeling technique; these concepts include circles,
boxes, lines, and text. Using them you can draw practically
any model by hand or with a drawing program.
	 Visit agiledraw.org for more details.

Refactoring
	 One of the core aspects of agile methods is not to do too
much design upfront so you can start showing results to
the customer quickly by developing actual software versus
producing comprehensive documentation that no one actu-
ally reads or maintains. Of course, the downside is that it cuts
down on the amount of design done for an application. How-
ever, this isn’t necessarily a bad thing since most program-
mers find better ways of doing things once they begin coding.
	 For example, we find cleaner ways of structuring our code

after the first pass at it, perhaps by improving our own design
or because we learned a better way of using a framework
(such as Hibernate or Spring). This code improvement is
known as refactoring and is considered a continuous design
activity.
	 Refactoring is more than fluff; it’s now appearing as a
menu option in integrated development environments such
as Eclipse and IntelliJ IDEA. Visit Martin Fowler’s Web site,
refactoring.com, for more information on refactoring along
with a catalog of many refactoring techniques.

Other Design Considerations
	 While refactoring can help improve code, there might
be other things you should consider upfront or in the first
couple of iterations. Some of these include schemes for
transaction management, exception handling, clustering,
and application security (authentication, authorization,
and encryption). Any enterprise-class project that doesn’t
at least consider these “big picture factors” upfront is asking
for trouble later. One common problem found in XP projects
is that a lot left for refactoring later never happens. Drawing
bare-minimum architecture models like the one shown in
Figure 7 upfront can help with general discussions about the
important design considerations I’ve mentioned here.

Agile Java Development
	 Now that we’ve discussed agile processes and modeling,
we are ready to begin coding. However, before coding can
begin, getting the environment set up is important, so let’s
look at that first before discussing Hibernate, Spring, and
other technologies.

Environment Setup: JDK, Ant, JUnit, and Version Control
	 Before Java application development can begin, some
minimal tools are required such as the Java Standard Edition
Development Kit, a build tool like Apache Ant, and an im-
portant tool for agile development, a unit-testing framework
such as JUnit.

Apache Ant
	 Ant is commonly used to build Java applications, how-
ever, it’s much more than a build tool. For example, some
commonly found Ant tasks include javac, copy, delete, move,
junit, cvs, ftp, mail, exec, and sleep – these can be used for
everything from file management to code compilation to
e-mailing. You can even write your own custom tags and it
should be no surprise that there are many Open Source and
commercial Ant tasks available.
	 For details on Ant, visit the ant.apache.org.

JUnit and Test Driven Development (TDD)
	 Erich Gamma (Gang of Four, Design Patterns book) and
Kent Beck originally wrote JUnit. JUnit classes provide vari-
ous assert methods (for example, assertTrue and assert-
Null) that let you test the expected results. JUnit is a simple
framework but a powerful unit-testing tool. When combined
with Test-Driven Development (TDD; testdriven.com), a

17July 2006JDJ.SYS-CON.com

method created by Kent Beck, it can significantly help you
write better, cleaner, stabler code. TDD recommends that you
write your test code before writing your actual code – this is a
fundamental mind shift but one I recommend you investi-
gate further.
	 For details on JUnit, visit the junit.org.

Version Control, Naming Standards and More
	 Finally, getting a development directory structure estab-
lished, class/file naming conventions defined, and version
control software in place such as Concurrent Versions System
(CVS) are crucial steps that a development team should take
to be highly effective.

Developing Our Data Tier with Hibernate
	 Relational databases and object-oriented technologies
have been with us for a while now and it appears they are
here to stay for the foreseeable future. Given the fact that Java
developers typically work with both technologies, JDBC is
often used to write the mapping code in data access objects
(DAOs) that can be used to fetch and save the data – passing
data back and forth is typically handled using data transfer
objects (DTOs). An alternate approach to using JDBC is to
use EJB entity beans, however, before EJB 3.0, they would
have been considered heavy-handed since they were remote
objects. So, what do you do if you want an agile approach to

Java persistence using POJOs? One answer is an ORM frame-
work such as Hibernate.
	 Object-relational mapping (ORM) code eliminates the
need for writing JDBC calls by hand, lets you do the mapping
in XML files and then simply work with database records as
POJOs. Hibernate is a popular ORM framework widely used
in the Java community. In fact, due to its popularity, the EJB
3.0 specification follows the Hibernate model very closely.
	 Hibernate supports a dozen or so relational databases
(through its dialect classes). To use it, we first need to con-
figure the database connection, typically in a file called hiber-
nate.cfg.xml. Then, for each table to be used, we’d typically
map the table to a Java class. For example, the following line
shows a sample mapping for a table called Department (in
a file called Department.hbm.xml) that maps to a Java class
called Department as well.

<class name=”com.visualpatterns.timex.model.Department”

 table=”Department”>

	 This next line shows mappings for a couple of the col-
umns, with departmentCode being a primary key in database
terms and a unique object identifier in Hibernate/ORM
terms:

<id name=”departmentCode” column=”departmentCode”>

<property name=”name” column=”name”/>

	 Once the database and mappings have been properly
configured, we can simply obtain a Hibernate Session (es-
sentially a JDBC database connection) from a SessionFactory
and work with the record as a Java object, as demonstrated
in the code below, which fetches a Department record with a
departmentCode of “IT”:

Session session = sessionFactory.getCurrentSession();

department = (Department) session.get(Department.class, “IT”);

	 As you might guess, Hibernate also provides methods to
save and delete database records (objects). Some of these
methods include save, load, get, update, merge, saveOrUp-
date, and delete.
	 One of Hibernate’s most powerful features is its Hibernate
Query Language (HQL). This is a SQL-like language and is
extremely robust since it supports such things as joins, ag-
gregate functions, parameter substitution, expressions, and
sorting. The extremely simple example below demonstrates
how we can fetch a java.util.List of objects from the Depart-
ment table:

departmentList = session.createQuery(“from Department ORDER BY

name”).list();

	 We’ve merely scratched the surface here since Hibernate
provides many more features; some of them include record
locking, associations, native queries, stored procedure sup-

 Figure 7

JDJ.SYS-CON.com18	 July 2006

OPNET Panorama offers powerful analytics for rapid troubleshooting of complex
J2EE/.NET applications. Panorama quickly identifies how application, web, and data-
base servers are impacting end-to-end performance. With Panorama, you can pin-
point the source of a problem, so time and money aren't spent in the wrong places.

The world’s most successful organizations rely on OPNET's advanced
analytics for networks, servers, and applications.

OPNET Technologies, Inc. 7255 Woodmont Avenue, Bethesda, Maryland 20814 phone: (240) 497-3000 • e-mail: info@opnet.com • NASDAQ: OPNT

© 2006 OPNET Technologies, Inc. All rights reserved. OPNET is a registered trademark of OPNET Technologies, Inc.

www.opnet.com/pinpoint

MAKE ANSWERS TO PERFORMANCE PROBLEMS COME TO YOU.

Register for an
Online Webinar

port, scrollable iterations, interceptors, and filters.
	 Visit hibernate.org for more details.

Developing Our Web Tier with Spring
	 Spring (springframework.org) is one of those framework
that is almost impossible to describe in one short sentence
because it does so much. For example, it supports IoC or
inversion of control (martinfowler.com/articles/injection.

html), a complete Web MVC framework, JDBC, ORM, JEE/Web
Services, aspect-oriented programming (AOP), declarative
transaction management, job scheduling, mail, and more.
	 Using Spring provides several benefits like easier and
cleaner unit testing, the ability to use POJOs in lightweight
containers (say, Apache Tomcat) with enterprise services
such as declarative transaction management, convenient
data access, and consistent data exception handling through
ORM and JDBC integration, and job scheduling in a Web/ap-
plication server.

The Spring Web MVC Framework
	 The Spring Web MVC Framework (or simply Spring MVC)
is a robust, flexible, well-designed framework for rapidly
developing Web applications using the MVC design pattern.
The benefits to using this Spring module are similar to those
you get from the rest of the Spring Framework; however, one
additional and very key benefit is the ability to bind directly
to business objects unlike other frameworks that require
you to extend special sub-classes. Let’s review some Java and
configuration-related concepts for this framework.

Spring MVC Java Concepts
	 The key Java concepts in Spring MVC are:
•	 Controller
•	 Model and view object
•	 Command (form-backing) object
•	 Validator object
•	 Tag libraries

	 One of the good features of Spring MVC is that it provides a
large number of controller classes to choose from (see Figure
8). Of course, this can be a bad thing when you’re trying to
learn this framework because deciding which to use can be
a minor challenge. For example, I tend to use SimpleForm-
Controller for HTML forms and UrlFilenameViewController
when I don’t need a controller. In some cases, I simply
implement the Controller interface when I want a no-forms
controller.
	 Many of the key GET- and POST-related Spring controller
methods return a ModelAndView object that can contain
model-related data and the name of a view (or reference to a
view object). For controller classes that support HTML forms,
we can have optional command and validator objects to bind
the HTML form fields to Java objects and validate the input
data, respectively. As for the view itself, Spring supports a
variety of view technologies including JSP, Velocity, and Jas-
perReports. Let’s look at how we might use JSP for our views.
	 Figure 5 shows a sample forms screen that can be devel-
oped in JSP using Spring’s bind tag library. The Spring bind
tag library is simple yet powerful. It’s typically used in JSP
files via the <spring:bind> tag that essentially binds HTML
form fields to the command object. Furthermore, it provides
access to special variables in JSP that can be accessed using
JavaServer Pages Standard Tag Library (JSTL) expressions
such as ${status.value}. The code excerpt below demonstrates

 Figure 9

 Figure 10

 Figure 11

JDJ.SYS-CON.com20	 July 2006

how the spring:bind tag library works – notice how we bind
directly to the Department domain (business) object that we
looked at in the Hibernate section:

<spring:bind path=”command.departmentCode”>

 <input

 name=’<c:out value=”${status.expression}”/>’

 type=”text” size=”10”

 maxlength=”30”>

</spring:bind>

	 Besides spring:bind, Spring 2.0 introduces some new tag
libraries that ease working with individual HTML form ele-
ments. Some of these include form:input, form:textarea, and
so on.

Spring MVC Configuration Concepts
	 Till now we’ve only looked at Java-related concepts for
Spring MVC. Of course Spring also has configuration aspects.
For starters, its DispatcherServlet class has to be configured
in the Web server’s Web.xml file, so files matching a certain
extension (like .htm) can be processed by Spring MVC. Once
this is configured, we’re in the world of Spring MVC. From
here, we configure view resolvers and handler mappings in a
Spring application context file. View resolvers map incoming
URLs to actual view names. Handler mappings map incom-
ing URLs to controller classes.

Spring ORM
	 One of the beautiful things about Spring is its support
for third-party APIs such as JDBC, JAX-RPC, Hibernate, and
many others.” For example, if we use Spring with Hibernate,
we can eliminate the code required to manage Hibernate’s
sessionFactory, session and programmatic transaction man-
agement. The benefits of using Spring with Hibernate is that
it cuts down the Hibernate-related code by almost a half and
provides additional benefits such as easier testing, consis-
tent exception hierarchy, and management of Hibernate
resources.
	 Visit springframework.org for more details.

Effectively Developing Java Code with Eclipse
	 In my book I have a chapter dedicated to the Eclipse SDK.
Initially I planned to use a generic title but later I changed it
to “The Eclipse Phenomenon!” because that’s the best way
to describe what’s happening in the Eclipse community.
No matter how good another Java IDE might be, the sheer
number of plug-ins available for Eclipse is hard to match.
If you do a search for the words for “eclipse plugins” on the
Web, you’ll literally get millions of matches. In other words,
the Eclipse community is exploding!
	 The Eclipse platform is essentially a framework that pro-
vides a set of services that other plug-ins can build on. Each
plug-in is developed to the same platform, which translates
into a set of highly integrated tools. The Eclipse Web site cur-
rently has many sub-projects underway including everything

from support for various programming languages to model-
ing plug-ins to reporting, testing, and performance to almost
everything else required for software development.
	 The core concepts of Eclipse include a workspace, es-
sentially a directory for your projects. The first main screen
in Eclipse is known as the workbench (see Figure 9). The
workbench contains a set of editors and views organized as
perspectives. Perspectives are task-specific layouts of editors
and views.
	 One of the core Eclipse plug-ins is the Java Development
Tool (JDT). It’s an extremely robust plug-in with support for
Java development such as managing Java-related files (.java,
.class, and .jar), Java views, compilation, code formatting,
debugging, refactoring, and syntax highlighting – in fact, the
JDT plug-in is a full-blown product in itself.
	 Another important plug-in is the Eclipse Web Tools Plat-
form (WTP), intended for developing JEE Web applications. It
provides editors like JSP, HTML, CSS, JavaScript, and WSDL.
It also provides extremely handy database query and model
tools to explore the database, run queries, and analyze the
data. Of course, the ability to create and test Web Services
easily is another major feature of this plug-in. JDJ published a
series of articles by Boris Minkin on using WTP (see http://
java.sys-con.com/author/minkin.htm).
	 Apart from the plug-ins provided on the Eclipse.org Web
site, there’s no shortage of plug-ins available for Eclipse on
the Web. Sites such as eclipseplugincentral.com, eclipse-
plugins.2y.net, and myeclipseide.com have a large number of
plug-ins.
	 Other Eclipse features include team support via tight
integration with CVS, a robust help system, a large number of
preferences, and shortcut keys.
	 In short, Eclipse provides tools to work on all tiers of an
applications, that is, data, Web, and business.

Beyond the Basics
	 If we lived in a perfect world, we would simply gather
user requirements, code them, and deliver perfectly stable
applications that would run smoothly without intervention.
However, as developers, we know it doesn’t quite work that
way and that there are times to troubleshoot problems or
monitor the “health” of our applications; so, let’s review some
techniques that can help.

Debugging
	 Debugging is typically a process of locating and fixing
a defect, although it can also be used to step through
code to ensure the logic works right. Eclipse’s JDT plug-in
provides a powerful Java debugger that lets us debug
local Java programs or ones running on a remote Java
server. Like most debuggers, the Eclipse JDT debugger can
step through code (one line at a time or by jumping to a
breakpoint) and inspect variables. It also provides a very
useful feature known as Hotswap that lets us change code
on-the-fly, recompile, and continue debugging in the same
session. This is a handy feature since setting up a debug-

21July 2006JDJ.SYS-CON.com

ging session just the way you want it can take time. Figure
10 demonstrates how we can debug our Java code, see the
data in the database, and see the console output – all in a
highly integrated fashion using two completely different
plug-ins JDT and WTP.

Profiling
	 Java profilers have been around for almost as long as Java.
Among other things, they let us analyze the heap for memory
usage and leaks, CPU utilization, trace objects, and methods,
and determine performance bottlenecks. A variety of Open
Source profilers are available out there, as well as com-
mercial ones (like YourKit Java Profiler and Quest’s JProbe
Suite). Some run as standalone Java programs; others can be
deployed to a servlet container; and still others are available
as Eclipse plug-ins. So, if you’re looking for an Open Source
profiler,: www.manageability.org/blog/stuff/open-source-
profilers-for-java/view/ lists a dozen of them.
	 One other profiler that’s supposedly one of the best is the
NetBeans Profiler, however, I haven’t tried it out yet but the
screenshots look sleek. Visit profiler.netbeans.org to learn
more about this.

Logging
	 Logging is an important aspect of software development
and varies from print statements to complex database-based
logging. Logging types can include audit logging, tracing,
and error reporting.
	 Two logging frameworks commonly found in the Java
world are Apache Log4J (logging.apache.org/log4j/) and
JDK logging (java.sun.com). Another option is to use
Apache’s Jakarta Commons Logging (jakarta.apache.org),
which provides a thin bridge between various logging
frameworks, including Log4J and JDK logging. While we can
use simple print statements to output messages from your
programs, logging frameworks let us control the output
of our messages according to destination (files, database,
remote), levels (fatal, error, warning), and format (date and
time). In addition, logging frameworks provide benefits
such as automatically rolling over log files when they reach
a certain length.
Monitoring
	 Java Platform Standard Edition (JSE) 5.0 provides built-in
remote monitoring, management, and the JConsole Swing-

based utility (see Figure 11) to monitor applications that
run using JSE 5.0 or later versions. These tools can be used
to view the resource utilization of Java applications. For ex-
ample, it can help detect memory issues, class loading, and
garbage collection, control JDK logging levels, and manage
an application’s Managed Beans (MBeans). Furthermore,
Spring’s JMX support lets us automatically register POJOs,
which gives us a powerful paradigm because we could easily
write business-type objects that can be monitored (instead
of the typical low-level technical stuff). For example in
our sample application, this could include the number of
timesheet records fetched and the number of logins.

Conclusion
	 We’ve covered a lot of ground in this article. As I mentioned
at the beginning, this is a road map for one way of doing agile
Java development. However, what would an article in a Java
magazine be without some Java code? So I have a completely
functional sample timesheet application, downloadable (and
a deployable war file) at http://visualpatterns.com/resources.
jsp. The resource section below also provides a summary of
links specified throughout the article.
	 I hope this article has provided some guidelines for devel-
oping Java in an agile manner. Cheers!

Resources
•	 Agile Data: agiledata.org
•	 Manifesto for Software Development: agilemanifesto.org
•	 Agile Modeling: agilemodeling.com
•	 Scrum: controlchaos.com
•	 Eclipse Foundation: eclipse.org
•	 Extreme Programming: extremeprogramming.org
•	 Hibernate: hibernate.org
•	 Martin Fowler: martinfowler.com
•	 The Spring Framework: springframework.org
•	 Test Driven Development: testdriven.com
•	 Author’s Web site: visualpatterns.com

Anil Hemrajani is the author of the book Agile Java Development with Spring, Hibernate

and Eclipse. He has 20 years of experience in IT working with Fortune 100 companies

and smaller organizations. He is the founder of Isavix Corporation , a successful IT

service company, and DeveloperHub.com, formerly isavix.net, an award-winning online

developer community. He has published numerous articles in well-known trade journals

and gotten several awards. Anil can be reached via his Web site, VisualPatterns.com.

“If we lived in a perfect world, we would simply
gather user requirements, code them,

and deliver perfectly stable applications that
would run smoothly without intervention”

JDJ.SYS-CON.com22	 July 2006

n my earlier article “Moving to
SOA in J2EE 1.4” published in the
February issue of JDJ I introduced
you to the new object distribu-

tion model based on Web Services that
became available to Enterprise Java
applications with the advent of Java
EE 1.4. In this article I want to look at
the security features available in Java
EE SOA.
	 Here you’ll get thehands-on knowl-
edge of Web Services security in Java
EE that we acquired when adding
security support to OptimalJ-gener-
ated SOA applications. It’s based on
the J2EE 1.4 specification itself as well
as on what is actually supported and it
works in three major J2EE 1.4 applica-
tion servers — JBoss 4.0.4, WebSphere
6.0.2.x, and WebLogic 9.1. You’ll also
learn about the new mandatory secu-
rity features available to Web Service
endpoints in Java EE 5.0.

Overview of Security in Java EE
	 Java EE comes with a mature
security model that provides for the
guaranteed features that have to be
supported by all compliant application
servers: authentication, authorization,
confidentiality, and integrity. Though
not yet required by the specification,
most high-end application servers
also support some sort of auditing of
security-related events and non-re-
pudiation — in other words a way of
preventing an invocation sender from
denying responsibility for the action
— for communicating with Web Ser-
vice components.
	 Authorization is based on logical
security roles that are simple names
defined by the component provider or
application assembler in XML deploy-
ment descriptors. The code under-
neath all Java EE components — JSPs,

servlets, and Enterprise JavaBeans
— can be restricted declaratively
based on logical security roles. In the
case of EJBs, access can be limited on
an Enterprise Bean’s method level,
whereas access to JSPs and servlets is
enforced based on their URL and the
HTTP method utilized (e.g. POST, GET,
etc.). Besides declarative authoriza-
tion, programmatic authorization is
also supported so that a component’s
code can dynamically inquire whether
the security context of the current user
is associated with a particular logical
security role and make a decision
based on this analysis. How a given
principal is actually mapped to a set of
security roles depends on the Java EE
notion of a security domain and the
principal authentication mechanisms
associated with the domain.
	 The confidentiality and integrity
requirements are met at the trans-
port layer with the help of the Secure
Sockets Layer (SSL 3.0) protocol and
the related IETF standard Transport
Layer Security (TLS 1.0) protocol. For
SSL and TLS only X.509 certificates are
supported for authenticating princi-
pals. Kerberos-based authentication
mechanisms in TLS are presently
regarded as optional and aren’t imple-
mented by the application servers this
article concentrates on.
	 The authentication security require-
ment is by far the most difficult to
explain since it requires understand-
ing the Java EE notion of a security
domain, which is essentially a security
mechanism used to authenticate
the user. Here are the three arbitrary
examples of security domains:

1.	A security domain where users are
authenticated based on their X509
certificates presented during an SSL

handshake. In this case the protocol
used by the client for communicat-
ing with the application server can
be HTTPS, IIOP/SSL, or JRMP/SSL.

2.	A security domain that uses the SRP
protocol in communicating a user’s
name and password to the server
in a secure fashion. Here the com-
munications protocol that the client
uses can be JRMP.

3.	A security domain that uses the
HTTP Basic Authentication in com-
municating a user name and pass-
word to the server. Such a security
domain will use either HTTP or
HTTPS as the supported communi-
cations protocol.

	 Different security domains entail
different types of principals for rep-
resenting users. In the first security
domain presented above, a principal
will be derived from an X509 certificate
or a certificate chain that the user pre-
sented during an SSL handshake. In
the second example, a principal will be
taken from the user name specified by
the client. Here’s a code sample taken
from JBoss that shows how a certificate
chain can be mapped to a principal:

public Principal toPrinicipal(

 X509Certificate[] certs) {

 Principal subject =

 certs[0].getSubjectDN();

 return subject;

}

	 Thus a security domain deals with
a set of principals of a particular
kind (e.g., based on X509 certificates,
Kerberos tickets, plain user names,
etc.). This set is termed a principal
realm. For each principal realm, there’s
mapping between its principals and
the one or more logical security roles

Security

Andrei Iltchenko

Web Services
Security in Java EE

I

Andrei Iltchenko

is a development

lead at Compuware

Corporation where

he works on the MDA

product OptimalJ and

is responsible for the

business logic area of

OptimalJ-generated

J2EE applications. He

is also a Sun certified

Java developer for

Java Web Services, a

Sun Certified Business

Component Developer,

a Sun Certified Devel-

oper, and a Sun Certi-

fied Programmer.

The present and future

JDJ.SYS-CON.com24	 July 2006

that are used in Java EE applications.
Application servers offer a plethora of
ways to represent a principal realm,
the most common of which are a local
OS user registry, an LDAP server, an
RDBMS schema, a Kerberos KDC, or a
simple .properties files.
	 Modern Java EE application servers
support different security domains
or let users define their own based on
the JAAS login modules available. See
the sidebar “What is JAAS?” for more
information on using JAAS in Java EE.
	 When a Java EE application is
deployed, the deployer assigns the
application modules to the security
domains that have been configured in
the targeted application server instal-
lation. Typically, the components of a
Java EE module (an EJB .jar module or
a Web .war module) are all assigned to
the same security domain; some appli-
cation servers let the components of a
given module be assigned to different
security domains, but this practice is
generally avoided since it can easily
lead to confusion. Java EE doesn’t stan-
dardize the scope of a security domain
and leaves it up to vendors. At the mo-
ment all high-end application servers
let a security domain span multiple
application server installations (which
typically form a cluster).

Security Context Propagation and
Single Sign-on
	 A Java EE application server features
three different containers (there’s also
an applet container that is typically
embodied by a Web browser program):
a Web Container that hosts JSPs and
servlet components, an EJB Container
where EJB components are deployed,
and an Application client container
(see the sidebar “Application client
containers” for more details on this
concept). EJB and Web Containers
are typically collocated, and compo-
nents running in the Web Container
can access EJBs of the corresponding
EJB container. Figure 1 depicts the
relationships between the three con-
tainers and various ways in which a
client can access a Java EE application.
For simplicity’s sake I depicted all the
enterprise components as running in
the same application server on a single
node, but it doesn’t have to be this
way; modern application servers let
them be distributed among multiple
nodes.
	 The following are the two typical
usage scenarios shown in Figure 1

involving access to an enterprise Java
application:

1.	A user accesses a JSP or a servlet
component deployed in a Web
Container with a Web browser.
He authenticates himself to the
Web Container using either 1) a
username and password that his
Web browser prompts him to enter
(Basic HTTP Authentication) or 2)
an X509 certificate that the browser
lets the user choose from a pre-
installed set of user certificates. The
servlet component carries out the
presentation-related activities and
invokes an EJB Session component
(using a local invocation in the
same JVM or RMI-based protocol)
to carry out the business logic-relat-
ed tasks. To fulfill the business logic
task the session bean can invoke
an Entity EJB, call on an EIS with a
help of a JCA resource adapter, or
carry out some JDBC-based data
access. After completing its work,
the session component returns the
processing results to the servlet
component, which in turn renders
them to the user in HTML.

 The user can then invoke the

servlet or some Web component or
JSP again.The application server
maintains a session with the user’s
browser and doesn’t require re-
authentication.

2.	A Java client application uses either
RMI-IIOP or RMI-JRPM to access
the server. The application prompts
the user for a name and credentials
and authenticates itself to the server
with the help of JAAS and one or
more JAAS the login modules pro-
vided by the vendor. For RMI-IIOP,
the CSIv2 SAS protocol will most
likely be used to communicate
authentication data to the server.
The client application accesses an
EJB deployed in an EJB Container.
Like the first scenario, the invoked
EJB can call other EJBs or enterprise
services.

 The client application then goes
on to invoke another EJB without
having to re-authenticate the user.
Listing 1 is an example of such a cli-
ent application for WebSphere.

	 A lot can be gathered from these
scenarios and from Figure 1.
	 First, they show that external clients
can access components running in the

What Is JAAS?
JAAS stands for Java Authentication and Authorization Service. It provides a Java implementation of the

Pluggable Authentication Module (PAM) framework that was pioneered in the Solaris operating system.

Modern application servers use JAAS to authenticate principals accessing resources running in the server.

It is also used heavily by Java clients running in an application container as a way of authenticating

themselves to the application server and benefiting from single sign-on.

The article “JAAS in the Enterprise” gives a pretty good idea of the future direction that this specification is

likely to take in upcoming releases of Java Enterprise Edition.

Application Client Containers
Application client containers are a way of giving remote J2SE clients access to the components and

services of a Java EE application server.

Despite its rather imposing name, an application client container can be nothing more than a set of

.jar libraries that let a standalone Java application access the JNDI tree of an Java EE application server,

whereby gaining access to the Enterprise Beans and other enterprise services such as JMS, container-man-

aged JDBC data sources, and JavaMail.

For JBoss AS the set of .jar libraries is all that’s required to set up a client container on a host where a Java

SE runtime is installed (see http://wiki.jboss.org/wiki/Wiki.jsp?page=J2EEClient for more information).

For WebSphere and WebLogic, the setup is more involved — both require that a client host have access

to the AS installation and provide an application client launch program that must be used to execute a

client program.

25July 2006JDJ.SYS-CON.com

WEB container by using either HTTP
or HTTPS and components hosted
in the EJB container with RMI-IIOP
or RMI-JRMP. They also show that
components can use 1) local invoca-
tions in the same JVM, 2) RMI-IIOP,
or 3) RMI-JRMP for inter-component
communication. Which of the three is
used depends on the vendor and the
configuration of the application server.
	 Second, in both examples the cli-
ents authenticated themselves to the
container before being able to use a
component, and the application server
propagated the established client
security context when the component
invoked the other EJBs.
	 Third, the samples demonstrate
Java EE support for single sign-on (fre-
quently abbreviated as SSO), thanks to
which needless re-authentications are
avoided for subsequent application
are avoided server access. The propa-
gation of the client security context
and single sign-on are two important
security characteristics of Java EE.
	 Application servers let the client
security context be propagated if
local JVM invocations, RMI-IIOP, or
RMI-JRMP are used as inter-compo-
nent communication transports and
the component targeted belongs to
the same security domain. A client
security context typically consists of a
principal object (whose type depends
on the security domain of the Java
EE application) and zero or more as-
sociated credentials presented during
authentication. Java EE specifies RMI-
IIOP and the accompanying CSIv2

OMG spec as the only interoperable
way of propagating a client security
context that must be understood
and supported by all compliant ap-
plication servers (a security context
propagated with RMI-JRMP is only
meaningful if the targeted component
runs in an application server from the
same vendor). Using CORBA-related
standards for interoperability among
disparate application servers reflects
the CORBA-oriented nature of the
early Java EE specifications that holds
to this day.
	 The way single sign-on capabili-
ties are gained depends on the client.
For Web browser clients, the Web
Container uses either HTTP cookies
or URL rewriting to track a session.
If the browser accesses the container
through HTTPS then SSL Sessions can
also be used. Which of the three mech-
anisms is available depends on the
application server and its configura-
tion. Some servers such as WebSphere
support all three, others don’t.
	 With a Java application client,
user authentication credentials are
established during the JAAS login and
are then kept in a thread local variable
of the Java application thread that
executes the code in Listing 1. The
credentials will then be used for each
subsequent application server access
by the thread until the logout state-
ment has been executed.
	 Besides the default mode in which
an established client security context
is propagated during inter-compo-
nent communication, Java EE lets a

given enterprise component specify
another identity (a so-called run-as
identity) that will be in effect when the
component accesses other enterprise
resources. The run-as identity mode
is typically used only when there’s
no client security context (e.g., with
message-driven beans and ejbTimeout
callback methods of Enterprise Beans
that implement the TimedObject
interface). For instance, in OptimalJ-
generated J2EE applications, users are
given a warning whenever they model
a message-driven bean or an enter-
prise component that uses the timer
service but doesn’t specify a run-as
identity.

Security in J2EE 1.4 for
Web Service Endpoints
	 By far, the most visible change in
J2EE 1.4 is the introduction of Web
Service endpoints, which effectively
provides a viable alternative model
for component distribution and
interoperability that can compete with
CORBA. The Web Service endpoint is
a term used to describe Web Ser-
vice components deployed in a J2EE
container. As I explained in my earlier
article, a service endpoint can be
implemented using a stateless session
bean, in which case it runs in the EJB
container, or as a Java class that’s regis-
tered as a servlet, in which case it runs
in the WEB container and is called a
JAX-RPC endpoint. Associated with
each service endpoint is its service
endpoint interface (SEI). As prescribed
by the WS-I Basic Profile, J2EE limits
SOAP to HTTP and HTTPS as its only
interoperable underlying transport
protocols.
	 Figure 2 shows the component
landscape in J2EE 1.4. It’s analogous
in intent to Figure 1 and complements
it by emphasizing the entries to the ap-
plication server through Web Service
endpoints. There are a number of
important differences between Figure
1and Figure 2. For instance:

1.	A Web Service component run-
ning in the WEB container can be
accessed from a client program
running in the application client
container, which wasn’t possible in
J2EE 1.3;

2.	A Web Service component hosted in

Security

 Figure 1

JDJ.SYS-CON.com26	 July 2006

the EJB container can be reached by
an external non-Java client not only
via the CORBA IIOP protocol, but
also using the lighter-weight SOAP
protocol;

3.	J2EE components can now use four
different transports for inter-com-
ponent communications: 1) local
invocations in the same JVM, 2)
RMI-IIOP, 3) RMI-JRMP, or 4) SOAP.

	 Let’s look at the ramifications of
these changes and the mandatory
Web Services security-related features
supported by all complaint application
servers.
	 The ability to reach an application
server with the new SOAP protocol im-
pacts authentication and J2EE requires
that the following two authentication
mechanisms be supported:

1.	HTTP Basic Authentication and
2.	HTTPS Mutual Authentication,

which uses the certificate presented
by a Web Service endpoint client
during a SSL/TLS handshake.

	 It’s fairly obvious that HTTP Basic
Authentication provides no security
unless combined with HTTPS. It’s also
apparent that with these two choices
authentication occurs in the transport,
which has consequences for inter-
component communication that I’ll
discuss later.
	 HTTPS Mutual Authentication is
a very viable authentication scheme.
Unfortunately we learned that many
applications servers, for example,

JBoss and WebSphere (see http://jira.
jboss.com/jira/browse/JBAS-3019),
don’t allow one to check the client
certificates presented during SSL/TLS
handshakes against the CRLs (Certifi-
cate Revocation Lists), which severely
limits the security of this authentica-
tion method in large public enterprise
applications.
	 To achieve integrity and confiden-
tiality when communicating with Web
Service endpoints, J2EE fully supports
SSL/TLS, giving it the same level of
security with regard to integrity and
confidentiality as whencommunicat-
ing via RMI-IIOP or RMI-JRMP.
	 Using SOAP for inter-component
communication in J2EE might present
some surprises since no client security
context propagation is supported
on most application servers (JBoss,
WebSphere) (http://jira.jboss.com/
jira/browse/JBWS-679 explains the
situation in JBoss).
	 You might also run into security
breaches similar to http://jira.jboss.
com/jira/browse/JBWS-675 — a secu-
rity vulnerability I discovered in JBoss
4.0.3 and older versions that enables
you to create a J2EE component (an
EJB or a servlet) that would send the
credentials of a user accessing it to a
non-authorized party whenever the
component being accessed communi-
cates via SOAP with another one.
	 For J2EE applications generated by
our OptimalJ product, we decided to
simply prohibit our users from model-
ing inter-component communica-
tions via the Web Service endpoints,

and I strongly recommend that you
don’t use Web Service endpoints for
this purpose either. If you need to use
SOAP for inter-component invoca-
tions, you’ll have to explicitly con-
figure security parameters for each
{ invokingComp/invokingModule,
invokedCompWithServiceEndpoint }
pair, called a Web Service Reference, in
a vendor-specific deployment descrip-
tor.
	 The situation with single sign-on
isn’t much better. Listing 2 shows a
piece of Java EE application client
code that accesses a Web Service end-
point. The code does the same thing
as Listing 1, but I use SOAP instead of
IIOP or JRMP to reach the application
server.
	 You can see that you don’t benefit
from JAAS for authentication and SSO,
because you have to specify the au-
thentication data for each invocation.
And uncommenting JAAS login state-
ments would be futile — even though
it will create a login session with the
server — because no attempt will be
made to put the established creden-
tials in the SOAP messages generated
by the calls to the enterprise compo-
nents. Fortunately most application
servers let you remove authentication-
specific data from your code and put
it into a deployment descriptor, but
that still falls short of proper SSO sup-
port.
	 Example 2 shows you a piece of a
JBoss client deployment descriptor
with the necessary authentication
data. The advantage of the deployment
descriptor approach is that it enables
you to specify security parameters for
each { invokingComp/invokingMod-
ule, invokedCompWithServiceEnd-
point } pair only once and does not
needlessly clutter the accompanying
Java code for each invocation.

Example 2

<service-ref>

 <service-ref-name>

service/Bean1Service

 </service-ref-name>

 <port-component-ref>

 <service-endpoint-interface>

Bean1ServiceEndpoint

 </service-endpoint-interface>

 <call-property>

 <prop-name>

Security

 Figure 2

JDJ.SYS-CON.com28	 July 2006

javax.xml.rpc.security.auth.username

 </prop-name>

 <prop-value>Name</prop-value>

 </call-property>

 <call-property>

 <prop-name>

javax.xml.rpc.security.auth.password

 </prop-name>

 <prop-value>Passw</prop-value>

 </call-property>

 </port-component-ref>

</service-ref>

Security for Web Service Endpoints
— The Future
	 If you’re familiar with recent devel-
opments in Web Services security stan-
dards, you may wonder why SSO and
security context propagation are still a
problem. The answer is simple. When
Java EE 1.4 was finalized in November
of 2003 there was no approved WS
specification that addressed the prob-
lem of security context propagation
and SSO at the SOAP message level.
The OASIS Web Services Security (WS-
Security) standard was then in draft,
which precluded its incorporation in
the spec. Since then WSS has become
an OASIS standard and has moved
from version 1.0 to 1.1. Currently,
the standard features two approved
profiles, each of which allows you to
achieve SSO: SAML Token Profile and
Kerberos Token Profile. There are also
two new non-OASIS specifications
that potentially address this problem:
WS-Trust and WS-SecureConversa-
tion. Both are currently in a public
draft state and their support in existing
Java EE application servers is largely
absent.
	 It’s logical then that Java 2 Platform,
Enterprise Edition, v5.0, which has just
been blessed by the Java Community
Process executive committee, should
offer some support for WS-Security
to address the problem of security
context propagation. Surprisingly Java
EE 5.0 contains almost no changes in
Web Services security and doesn’t ad-
dress the problems I delineated in the
previous section.
	 Fortunately IBM, BEA, and JBoss
support the WS-Security standard in
their WebSphere 6.0.x, WebLogic 9.1,
and JBoss 4.0.4. WebLogic even uses it
for security context propagation and
SSO while WebSphere and JBoss limit
themselves to authentication, encryp-

tion, and digital signing.
	 WebSphere, WebLogic, and JBoss
implement version 1.0 of the WS-Secu-
rity standard and support the follow-
ing specifications:

•	 SOAP Message Security
•	 UsernameToken Profile
•	 X.509 Certificate Token Profile

	 WebLogic also implements the
SAML Token Profile so it can offer Web
Services SSO and a security context
propagation experience.
	 Beside the SSO qualities in WebLog-
ic, the servers achieve the following
additional security characteristics with
the help of WS-Security:

1.	Authentication at the SOAP message
level using plaintext name pass-
words and X.509 Version 3 certifi-
cates;

2.	On WebLogic, authentication at the
SOAP message level using SAML
tokens;

3.	On WebSphere, authentication at
the SOAP message level using LTPA
tokens;

4.	Encryption of SOAP messages or
parts thereof using symmetric
cryptography. Secret keys can be
encrypted and put in messages too.
Essentially, the application serv-
ers support most of the required
and some of the optional encryp-
tion-related algorithms specified
in the XML Encryption Syntax and
Processing specification that the
WS-Security standard builds on.

5.	Digital signing and verifying SOAP
messages or portions thereof. This
is an important item because it
achieves non-repudiation — some-
thing that’s not possible with RMI-
IIOP- and RMI-JRMP-based trans-
ports and wasn’t possible in the Java
EE security model in the past. The
application servers implement most
of the required portions of the XML-
Signature Syntax and Processing
specification, which also underlies
the WS-Security standard.

6.	Means of defeating replay attacks
by using nonces and timestamps in
SOAP headers.

	 As I mentioned earlier, Java EE v
1.4/5.0 is silent on the subject of the

WS-Security standard. One unpleas-
ant consequence of that silence is that
you need to use container-specific
deployment descriptors to specify all
the WS-Security related information in
your application, which obviously limits
the portability of your application. We-
bLogic is an interesting exception. BEA
chose to adopt WS-Policy as a standard
means of specifying WS-Security-re-
lated configuration of its Web Service
endpoints (Microsoft has done the same
thing in its .NET Framework.) And JBoss
is moving toward embracing WS-Policy
(see http://jira.jboss.com/jira/browse/
JBWS-856 for more information).
	 The lack of WS-Security support in
Java EE 1.4/5.0 means that Sun Mi-
crosystem’s technology conformance
kits for Java EE (which an application
server must pass for it to be declared
compliant) exclude any related testing
and so vendors can deviate from one
another in their WS-Security im-
plemetations.
	 As is the case with most crucial
Web services specifications, the WS-I
Consortium (the producer of the Basic
Profile – a specification that ensures
interoperability among Web service
components today) – is defining a
subset of the WS-Security standard
and its constituent specifications that
all the vendors will have to support in
the same way. This effort is known as
the Basic Security Profile and is now in
draft. Until it’s completed and all the
vendors have incorporated it in their
products, interoperability issues are
inevitable (largely because of the ex-
tensiveness the WS-Security standard
and the plethora of decisions that a
vendor has to make when implement-
ing it). (The following article will give
you an idea of what problems you
might run into if you use products
from different vendors: http://www-
128.ibm.com/developerworks/web-
services/library/ws-was-net/index.
html?ca=drs-%20
%20%20%20%20%20%
20%20%20%20%20%
20%20%20%20Articles.)

Conclusion
	 Clearly the new Web Services object
distributed model in Java Enterprise
Edition 1.4/5.0 could supplant RMI-IIOP
and RMI-JRMP in Enterprise Java as the

29July 2006JDJ.SYS-CON.com

object distribution protocol that offers
the same or better security services. At
the moment, however, the level of sup-
port that the Java Enterprise Edition v.
1.4/5.0 specification required is clearly
insufficient for that to happen over night.
Still, given the current industry trends
and with more and more vendors com-
mitting themselves to WS-Security and
its Basic Security Profile counterpart, it is
more a question of when than if.
	 The fact that support for WS-I Basic
Security Profile isn’t prevalent yet in
Java EE applications servers and that
the profile is still subject to change has
consequences for those who develop
portable Java EE applications. If the
portability of your application is a con-
cern, you’d be better off limiting yourself
to the guaranteed Java EE 1.4/5.0 Web
Services security features and avoiding
WS-Security for a time being. This is the
approach we took in our forthcoming
OptimalJ product since we needed to
shield our users from the specifics of any
particular vendor implementations.

References
•	 Moving to SOA in J2EE 1.4: http://

java.sys-con.com/read/180362.htm
•	 Java 2 Platform Enterprise Edition

Specification, v1.4: http://java.sun.
com/j2ee/j2ee-1_4-fr-spec.pdf

•	 Java 2 Platform, Enterprise Edition,
v5.0: http://jcp.org/aboutJava/com-
munityprocess/pr/jsr244/

•	 The SSL Protocol, Version 3.0:
http://home.netscape.com/eng/
ssl3/draft302.txt

•	 RFC 2246: The TLS Protocol, Version
1.0: http://www.ietf.org/rfc/rfc2246.
txt

•	 RFC 2459: Internet X.509 Public Key
Infrastructure, Certificate and CRL
Profile: http://www.ietf.org/rfc/
rfc2459.txt

•	 RFC 2712: The Addition of Kerberos
Cipher Suites to Transport Layer
Security (TLS): http://www.ietf.org/
rfc/rfc2712.txt

•	 RFC 2945: The SRP Authentication
and Key Exchange System: http://
www.ietf.org/rfc/rfc2945.txt

•	 Making Login Services Independent
of Authentication Technologies:
http://java.sun.com/security/jaas/
doc/pam.html

•	 JAAS in the Enterprise: http://jdj.
sys-con.com/read/171477.htm

•	 Common Secure Interoperability,
Version 2: http://www.omg.org/
technology/documents/formal/

omg_security.htm#CSIv2
•	 Certificate and Certificate

Revocation List (CRL) Profile:
http://www.ietf.org/rfc/rfc3280.txt

•	 OASIS Web Services Security
(WSS): http://www.oasis-open.
org/committees/tc_home.php?wg_
abbrev=wss

•	 Web Services Trust Language (WS-
Trust): ftp://www6.software.ibm.
com/software/developer/library/
ws-trust.pdf

•	 Web Services Secure
Conversation Language (WS-
SecureConversation): ftp://www6.
software.ibm.com/software/devel-
oper/library/ws-secureconversa-
tion.pdf

•	 XML Encryption Syntax and
Processing: http://www.w3.org/TR/
xmlenc-core/

•	 XML-Signature Syntax and
Processing: http://www.w3.org/TR/
xmldsig-core/

•	 Web Services Policy Framework
(WSPolicy): http://specs.xmlsoap.
org/ws/2004/09/policy/ws-policy.
pdf

•	 Basic Security Profile: http://www.
ws-i.org/deliverables/working-
group.aspx?wg=basicsecurity

Security

Listing 1
final static InitialContext iniCtx = new InitialContext();
// Will prompt the user for a name and credentials
// using a GUI dialog box.
CallbackHandler handler = new WSGUICallbackHandlerImpl();
LoginContext logCtx = new LoginContext(“WSLogin”, handler);

// Single signon allows to access the container without
// needing to reauthenticate.
logCtx.login();
Subject subject = logCtx.getSubject();

PrivilegedAction bean1Action = new PrivilegedAction() {
public Object run() {
 try {
 Object homeProxy = iniCtx.lookup(“ejb/bean1”);
 Bean1Home bean1Home = (Bean1Home)
 PortableRemoteObject.narrow(homeProxy, Bean1Home.
class);
 Bean1Remote bean1 = helloHome.create();
 bean1.businessMethod1(...);
 ...
 }
 catch (CreateException ce) { ... }
 catch (RemoteException re) { ... }
}
};
PrivilegedAction bean2Action = new PrivilegedAction() { ... }

// Access components in the application server on behalf of ‘sub-
ject’
com.ibm.websphere.security.auth.WSSubject.doAs(subject, bean1Ac-
tion);
com.ibm.websphere.security.auth.WSSubject.doAs(subject, bean2Ac-
tion);

// End the logon session.
logCtx.logout();

Listing 2
InitialContext iniCtx = new InitialContext();
// No use logging in, authentication will occur in the transport
// anyway and no effort to propagate credentials established in
// the lines commented out below will be made!
//
// UsernamePasswordHandler handler =
// new UsernamePasswordHandler(username, password);
// LoginContext logCtx =
// new LoginContext(“client-login-module-name”, handler);
// logCtx.login();

Service srv = (javax.xml.rpc.Service)
 iniCtx.lookup(“java:comp/env/service/Bean1Service”);
Bean1ServiceEndpoint bean1Stub = (Bean1ServiceEndpoint)
 srv.getPort(Bean1ServiceEndpoint.class);

// Can use either 1) Java EE standard stub properties to specify
// authentication data for HTTP Basic Authentication, or
// 2) Vendor specific extensions to specify a cerificate
// for HTTPS Mutual Authentication

Stub stub = (Stub) port;

// Portable code for HTTP Basic Authentication.
stub._setProperty(“javax.xml.rpc.security.auth.username”, “Name”);
stub._setProperty(“javax.xml.rpc.security.auth.password”,
“Password”);

// JBoss specific code for HTTPS Mutual Authentication.
// stub._setProperty(“org.jboss.webservice.keyStore”, keyStore);
// stub._setProperty(“org.jboss.webservice.keyStorePassword”,
// “keyStorePassword”);
// stub._setProperty(“org.jboss.webservice.keyStoreType”, “JKS”);
// stub._setProperty(“org.jboss.webservice.trustStore”, trust-
Store);
// stub._setProperty(“org.jboss.webservice.trustStorePassword”,
// “trustStorePassword”);
// stub._setProperty(“org.jboss.webservice.trustStoreType”, “JKS”);

bean1Stub.businessMethod1(...);
...
// End the logon session.
// logCtx.logout();

JDJ.SYS-CON.com30	 July 2006

The Flex® Logo is a Trademark of Adobe Systems Inc. ©Copyright 2006. All Right Reserved

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓
✓
✓
✓

pplication security — the art
of applications defending
themselves — represents an
important line of defence in
an overall in-depth security

strategy. Web applications that follow
the Model-View-Controller (MVC)
architecture can, and should, have se-
curity implemented on all three layers.
Normally it’s the controller component
that handles page authorization in
MVC, the view layer that hides controls
and information based on user autho-
rization, and the model that enforces
the business rules and input valida-
tion. However, it’s up to the developer,
based on an individual security policy
and the programming technology
used, to decide where to put security.
Using pluggable validator components
in JavaServer Faces (JSF), for example,
developers may decide to verify user
input on the view layer as well as on
the model layer.
	 JavaServer Faces, the new J2EE
standard for building feature-rich
Web applications with JEE 1.5, has
few integrated security features. JSF
generously delegates the task of imple-
menting application security such as
page authorization to the application
developer, leaving many developers
pondering where to start, where best
to put security, and which security
technology to choose.
	 This article aims to answer such
questions for authorization in Ja-
vaServer Faces, demonstrating how a
custom PhaseListener that uses J2EE
container-managed security can be
used to implement access control for
JSF pages. Besides page authorization,
the security PhaseListener supports
protocol switching between HTTP and
HTTPS, a common requirement of
applications that work with sensitive
data on a Web page.

The J2EE Security Choices
	 The J2EE platform provides two
built-in security technologies for the

application developer to use: the Java
Authentication and Authorization
Service (JAAS) and container-managed
security, also known as J2EE security.
	 The Java Authentication and Autho-
rization Service is a J2SE 1.4 security
standard designed for the Java desktop
that’s also used as an implementation
technology for security in J2EE. The
JAAS authentication infrastructure is
built as a Java version of the Plug-
gable Authentication Module (PAM)
architecture that allows one or more
authentication providers to be used
for user identification. Before JAAS, the
Java 2 security platform was code-
centric, determining access privileges
based solely on the location of the
Java sources. Using JAAS, Java security
now also looks at the authenticated
user when evaluating access control to
resources. JAAS’s benefit is its ability to
implement fine-grained access control
through external Java permission
classes, which associate users with a
list of resources and allowed actions.
	 Authentication and authorization in
J2EE security is configured declara-
tively in the application’s web.xml
deployment descriptor and handled by
the J2EE container at runtime. Working
with APIs defined in the J2EE servlet
standard, application developers don’t
have to worry about the implemen-
tation of security in a container. In
container-managed security, autho-
rization is enforced on URL patterns,
which are absolute or relative URLs.
This however also means that autho-
rization is only enforced on requests
that are initiated by the client, not as
server-side forward requests.
	 Ease of use, the clean separation
of security definition and application
code, and portability across applica-
tion servers are the main reasons
for the wide adoption of container-
managed security among business
application developers. J2EE security
is sufficient to implement many com-
mon security use cases. As a reflection

of its popularity and its portability,
container-managed security is used
in the code examples of this article to
illustrate effective page authorization
in JavaServer Faces.

Container-Managed Security in J2EE
	 In container-managed security, a
user is granted access to protected
URL resources through security roles
defined in the web.xml deployment
descriptor. Security roles in J2EE are
logical names used in Web applications
that are mapped during or after deploy-
ment to user groups that exist on the
target application server platform.

Listing 1 Web.xml excerpt granting the app_user security

role access to the protected URL resource /faces/pro-

tected/*

<security-constraint>

 <Web-resource-collection>

 <Web-resource-name>Members</Web-

resource-name>

 <url-pattern>/faces/protected/*</url-

pattern>

 </Web-resource-collection>

 <auth-constraint>

 <role-name>app_user</role-name>

 </auth-constraint>

</security-constraint>

...

<security-role>

 <role-name>app_user</role-name>

</security-role>

	 To access a protected application
resource, Web application users must
first authenticate, which in container-
managed security is handled by the
J2EE container. Either the application
developer or the application deployer
configures the type of authentication
in the web.xml deployment descriptor.

Listing 2 Basic authentication defined for the jazn.com

realm

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>jazn.com</realm-name>

</login-config>

JSF

Frank Nimphius

By Invitation Only!

A
Effective page authorization in JavaServer Faces Duncan Mills

Frank Nimphius is

a principal product

manager for application

development tools at

Oracle Corporation. As

a conference speaker,

Frank represents the

Oracle J2EE develop-

ment team at J2EE

conferences world

wide, including various

Oracle user groups and

the Oracle Open World

conference.

Duncan Mills is a

Java evangelist and

product manager at

Oracle Corporation.

He’s been working in

the IT industry for the

last 17 years in various

development and DBA

roles and now works on

the team responsible for

the JDeveloper IDE. You

can follow Duncan’s life

on the GroundBlog at

http://www.groundside.

com/blog.

JDJ.SYS-CON.com32	 July 2006

	 To check authorization program-
matically in an J2EE application – like
in JavaServer Faces – application de-
velopers use the isUserInRole method
in the servlet API. This isUserInRole
method is also exposed via a conve-
nience method in JavaServer Faces
through the static FacesContext class.
Role names referenced in application
code ought to be mapped to roles
defined in the web.xml file using the
<security-role-ref> element if the role
names don’t match. Using the <se-
curity-role-ref> element, developers
don’t have to be aware of the security
role names that exist in the web.xml
descriptor when developing an ap-
plication.

Listing 3 Mapping the “user” role name used in the appli-

cation code to the security role name “manager_role”

defined in the web.xml file

<security-role-ref>

 <role-name>user</role-name>

 <role-link>app_user</role-link>

</security-role-ref>

	 If the authenticated user isn’t au-
thorized to access the requested URL
resource, the J2EE container responds
with HTTP error 403, indicating a bad
request. A HTTP error 401 is returned
if a user cancels the authentication
process. HTTP error codes and Java
exceptions are handled declaratively
in the web.xml file using the <error-
page> element.

Listing 4 Redirecting a request in response to unauthor-

ized page access handling error code 403 and 401

<error-page>
 <error-code>403</error-code>

 <location>Error.jsp</location>

</error-page>

<error-page>

 <error-code>401</error-code>

 <location>Logon_cancelled.jsp</location>

</error-page>

	 If SSL is required to ensure secure
communication when accessing a spe-
cific Web resource, the <security-con-
straint> element added for a protected
resource contains an additional <user-
data-constraint> element. Setting the
transport guarantee to “confidential”
indicates that SSL is required.

Listing 5 Indicating that a Web resource requires SSL

<user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</

transport-guarantee>

</user-data-constraint>

	 Though J2EE Web resources can
be configured to require HTTPS this
way, the J2EE specification doesn’t
demand that Web containers respond
by automatically switching protocols.
Instead, J2EE containers usually return
an HTTP error message to indicate a
failed user request. Individual J2EE
containers like Apache Tomcat provide
native support for switching between
the HTTP and HTTPS protocol. How-
ever, you ought to be aware that such
solutions aren’t portable to other J2EE
containers.

Page Navigation in JavaServer Faces
	 So we’ve seen how basic con-
tainer-managed security is configured
through the use of
logical application
roles protecting a URL
pattern. Now let’s look
at how JSF manages
page navigation and
how the principles of
container-managed
security can be ap-
plied.
	 Page navigation in
JavaServer Faces is
defined in the WEB-
INF\faces-config.xml
file, where the JSF
NavigationHandler
component uses it.
	 The application
developer configures
navigation in JSF
either as a server-
side forward or, if the
<redirect/> element is
included in the naviga-
tion case, as a browser
redirect.

Listing 6 JSF navigation case issuing a redirect request for

page navigation

<navigation-case>

 <from-outcome>success</from-outcome>

 <to-view-id>/Departments.jsp</to-view-

id>

 <redirect/>

</navigation-case>

	 Server-side forwards are the de facto
default implementation of naviga-
tion cases in JSF, but such navigation
harbors two side effects: first, the URL
won’t change, and so pages in the
application aren’t bookmarkable; and
secondly, there’s no new submission of
a URL pattern for container-managed
security to be applied to. As a conse-

quence, if you’ve implemented con-
tainer-managed security, you’ll have
to use <redirect/> explicitly on any
navigation cases that have to trigger a
security check across role boundaries.
	 It should be clear by now that
authorizing pages and implementing
a secure channel for communica-
tion isn’t easy to achieve in JavaSer-
ver Faces. And using JAAS instead of
container-managed security offers
no better solution. The answer lies
in a combined approach: a reusable
custom security implementation
specifically designed to work with JSF
based on JAAS or container-managed
J2EE security.

Where Does Security Belong in
JavaServer Faces?
	 As we’ve mentioned, JSF has no
real security infrastructure built into
it and this leaves the developer to
wonder where and how to implement
security. The examples that address
user authentication in JSF (using JAAS,
for instance) don’t cover the important
task of page authorization.
	 The authorization enforcer security
pattern demands that authorization
be handled in a central location. For
many Web applications, this central lo-
cation is a ServletFilter associated with
the application front controller. In JSF,
though, security is best implemented
using the built-in extension points
provided by the JavaServer Faces
architecture.

 Figure 1 Security PhaseListener sequence

33July 2006JDJ.SYS-CON.com

	 The two candidate approaches for
implementing security in JSF are:

•	 A custom ViewHandler that deco-
rates the default ViewHandler and
also adds security checks to the cre-
ateView and restoreView methods

•	 A PhaseListener that adds security
evaluation to the restoreView and
invokeAction phases

	 Adding security to a Viewhandler
doesn’t appear to be an ideal solution
because there’s no guarantee that a
security ViewHandler will be executed
before any other custom ViewHan-
dlers that have been registered. If
another ViewHandler is present and
writing to the servlet response stream
then security-related actions such as
redirecting a request to the HTTPS
port would result in illegal state
exceptions. So it seems that a custom
PhaseListener is the better approach
to adopt.

Developing a JavaServer Faces
PhaseListener for Security
	 JavaServer Faces executes in a
rich request lifecycle composed of a
sequence of individual phase events:
Restore View, Apply Request Values,
Process Validation, Update Model Val-
ues, Invoke Application, and Render
Response. PhaseListeners in JavaSer-
ver Faces are Java classes configured in
the faces-config.xml file and notified
when a specific phase event of interest
occurs.

	 To execute custom logic before and
after a specific event, custom applica-
tion code is added to the beforePhase
and afterPhase methods of a PhaseL-
istener. Both methods accept an input
argument of a PhaseEvent to provide
information about the calling phase,
for example, a phase ID. The third
method developers have to implement
is getPhaseId. The getPhaseId method
is used to declare which phases the
listener is actually interested in being
notified about.

Listing 7 Custom PhaseListener listening to any event and

implementing the JSf PhaseListener interface

public class J2EESecurityPhaseListener

implements PhaseListener

{

 public SecurityPhaseListener() { }

 public void afterPhase(PhaseEvent phas-

eEvent) { }

 public void beforePhase(PhaseEvent phas-

eEvent){ }

 public PhaseId getPhaseId() {return

PhaseId.ANY_PHASE;}

}

	 An application can have more
than one PhaseListener configured.
PhaseListeners are configured in the
<lifecycle> element of the faces-config.
xml configuration file.

Listing 8 PhaseListener configuration in faces-config.xml

<lifecycle>

 <phase-listener>

 com.groundside.jsf.J2EESecurityP

haseListener

 </phase-listener>

</lifecycle>

	 Java IDEs like Oracle JDeveloper
provide visual editors to simplify this
configuration of the faces-config.xml
file.

A J2EE security PhaseListener —
 J2EESecurityPhaseListener
	 The J2EESecurityPhaseListener is
a custom PhaseListener that imple-
ments page authorization for the JSF
restoreView and invokeAction phases
using container-managed J2EE secu-
rity roles. JSF doesn’t let PhaseListener
register for multiple selected events.
Either a PhaseListener registers for
one specific event or it registers for all
events. So the J2EESecurityPhaseLis-
tener listener is registered to listen to
any phase, but responds only to the
RESTORE_VIEW and INVOKE_APPLI-
CATION phases.

Listing 9 The J2EESecurityPhaseListener listens to any

event but responds to RestoreView and InvokeApplication

only

public void afterPhase(PhaseEvent phas-

eEvent)

 {

 PhaseId phaseid = phaseEvent.getPha-

seId();

 if (phaseid == PhaseId.RESTORE_VIEW||

 phaseid == PhaseId.INVOKE_

APPLICATION)

 { … }

}

JSF

 Figure 2 XML schema of the faces-security-config.xml file

JDJ.SYS-CON.com34	 July 2006

	 The J2EESecurityPhaseListener uses
an extra XML configuration file, faces-
security-config.xml, to define JSF pages
that require authentication, authoriza-
tion, or secure communication with
SSL. The faces-security-config.xml file is
located in the WEB-INF directory like the
JavaServer Faces faces-config.xml file.
	 The security PhaseListener parses
the faces-security-config.xml file with
the Apache Digester [DIGESTER] to
create a Java security object that is
subsequently cached in the ap-
plication scope. The security object
contains security information about
the configured HTTP and HTTPS
ports, whether or not to keep SSL after
it’s used the first time, and individual
authentication, authorization, and SSL
requirements for each page.
	 The PhaseListener determines page
authorization only once per session
for each JSF page (viewId) that a user
requests. At successful authorization, a
reference to the JSF page is cached in the
session to improve performance on sub-
sequent requests for the same resource.
	 A user who requests a protected
page without first having been authen-
ticated is redirected to an authen-
tication servlet. The authentication
servlet is configured in the web.xml
deployment descriptor and protected
by a J2EE security role that all users are
members of. All JSF pages configured
in the faces-security-comfig.xml file to
require authorization implicitly also
require authentication. If an unau-
thenticated user tries to access a page
that requires SSL, a container-man-
aged logon form is launched over
HTTPS.
	 The faces-security-config.xml file
consists of two parts:
•	 A global configuration section to

provide HTTP and HTTPS port
information and whether SSL com-
munication should be kept once
established. The keep-SSL-mode
information overrides the individual
page configuration for SSL.

•	 Multiple jsf-page elements to con-
figure page and directory authoriza-
tion. The page is identified by its
viewId, which starts with a leading
slash followed by the relative URI,
not excluding the faces virtual map-
ping (for example, /protected/main.
jsp). Directory names are indicated
by an appended wildcard character

‘*’ (for example, /protected/*).

	 For each protected page or directory,
the developer defines the authentica-
tion, authorization, and SSL require-
ments. If a page requires SSL, but the
current request protocol is HTTP, the
J2EESecurityPhaseListener redirects
the request to a configured HTTPS port.
Similarly, if the protocol is currently
HTTPS but the page doesn’t require a
secure channel and the keep-ssl-mode
is set to false, the PhaseListener redi-
rects the request to the HTTP port.
	 JSF pages and directories that re-
quire authorization have to reference
the name of one or more J2EE security
roles defined in the web.xml file. The
role-concatenation attribute lets
developers specify whether a user has
to be a member of all the configured
roles (AND) or only a single role (OR).
	 Because the security configurations
are stored in an XML file, the page
authentication strategy and the autho-
rization definitions can be changed
at any time without recompiling or
redeploying the application.
	 To use the J2EESecurityPhaseL-
istener in custom JSF applications,
developers do the following
•	 Deploy the jsfj2ee-security-util.jar

file as a library with the application.
•	 Create and configure the faces-

security-config.xml file in the appli-
cation WEB-INF directory.

•	 For protocol switching, configure
the HTTP and HTTPS ports and
ensure that the application server
is set up to share a session between
the two ports.

•	 Configure the authentication servlet
in the web.xml file.

•	 Configure container-managed
authentication and J2EE security
roles in the web.xml file.

	 Once set up, the J2EESecurity-
PhaseListener lets developers apply
authorization to any JSF page naviga-
tion – a forward or a redirect – while
still using standard container mecha-
nisms to handle authentication and
role definition.
	 To improve default container-man-
aged security, the J2EESecurityPhaseL-
istener also lets developers configure
page authorizations that use multiple
J2EE roles, rather than having to define
multiple roles to achieve fine-grained

authorization in conventional contain-
er-managed security.

Completing the Page Authorization
Picture with a Custom Property
Resolver
	 The “limited view” security design
pattern defines what users can view
and access and lets them access ac-
cordingly. Protecting a page from unau-
thorized access alone isn’t enough. UI
components that initiate page naviga-
tion should be hidden if the user is not
allowed access the navigation target. To
set a component’s rendered property
to false, expression language (EL) can
be used. The EL can be sourced from
handcrafted managed beans defined as
part of the application or more generi-
cally through a security-aware custom
variable resolver. A sample resolver of
this type is available for download at
jsf-security.sourceforge.net.

Summary
	 Without a doubt, JavaServer Faces is
a great step forward for J2EE applica-
tion development. Application security
is, however, an important component
in the development lifecycle and,
unfortunately, this is where the current
JavaServer Faces specification falls
short. In the future, we would hope
and expect that security integration,
perhaps of a nature similar to that dis-
cussed in this article and the associated
code, will be added to the specification.
	 The custom J2EESecurityPhase-	
Listener developed for this article
uses container-managed security for
the sake of simplicity, but it can be
adapted to use either JAAS or a custom
security provider. The source code for
this PhaseListener based solution can
be downloaded with this article.

References
•	 E. Burns, C. Schalk. JavaServer

Faces: The Complete Reference. ISBN
0072262400

•	 D. Alur, J. Crupi, and D. Malks. Core
J2EE Patterns: Best Practices and
Design Strategies. 2d ed. ISBN 0-13-
142246-4

•	 http://jsf-security.sourceforge.net/
•	 DIGESTER: http://jakarta.apache.

org/commons/digester/

JDJ.SYS-CON.com36	 July 2006

he WebLogic-Eclipse plug-in
is designed to run the Web-
Logic Server from the Eclipse
IDE. With the WebLogic-
Eclipse plug-in, the WebLog-

ic Server gets started and stopped
from Eclipse. An application
deployed in the WebLogic Server can
be debugged from Eclipse with the
plug-in. By installing the WebLogic
plug-in in Eclipse the WebLogic
Server can be configured and ad-
ministered from the Eclipse IDE by
setting the server classpath and JVM
options in Eclipse.

Overview
	 A J2EE developer is commonly
required to administer the Web-
Logic Server and debug applications
deployed in the WebLogic Server.
While the WebLogic Server adminis-
tration console can start and stop the
WebLogic Server, the administration
console doesn’t provide for setting the
JVM options and the server classpath.
The JVM options and server classpath
have to be set in the startWebLogic
script. And to debug an application
deployed in the WebLogic Server, an
IDE with a remote debugger is needed.
With the WebLogic plug-in the Web-
Logic Server can be administered from
the Eclipse IDE. In this tutorial we’ll
develop a J2EE application consisting
of a Session EJB and a servlet, deploy
the application in the WebLogic Server
from the Eclipse IDE, and debug the
application in Eclipse.

Preliminary Setup
•	 Download and install the Eclipse

3.0 IDE: www.eclipse.org
•	 Download and install the WebLogic

8.1 Server: www.bea.com/frame-
work.jsp?CNT=index.htm&FP=/
content/products/weblogic/server

Installing the WebLogic-Eclipse
Plug-in
	 Now we’ll install the WebLogic-
Eclipse IDE. In the Eclipse IDE select
Help>Software Updates>Find and
Install. The Install/Update frame
gets displayed. Select Search for new
features to install and click on the
Next button. The Install frame gets
displayed. Click on the New Remote
Site button to specify an update Web
site from which to install a plug-in. In
the New Update Site frame specify a
name and the URL from which the We-
bLogic-Eclipse plug-in is installed. The
URL for the WebLogic-Eclipse plug-in
is https://eclipse-plug-in.projects.
dev2dev.bea.com/update. An update
site configuration gets added. Select
the checkbox for EclipseWebLogic for
“Sites to include in search” and click
on the Next button. In the features
to install frame select the WebLogic-
Eclipse Feature and click on the Next
button.
	 Select the license terms and click on
the Next button. In the Install location
frame the directory in which the Web-
Logic-Eclipse plug-in will be installed
is specified. Click the Finish button
to complete the configuration of the
WebLogic plug-in. The JAR Verification
frame is displayed. Click the Install
button to install the WebLogic-Eclipse
plug-in. Restart the Eclipse workbench
for the plug-in to get installed. The We-
bLogic-Eclipse plug-in gets installed in
the Eclipse IDE. The Run>Start Web-
Logic and Run>Stop WebLogic features
get added to Eclipse.

Configuring the WebLogic-Eclipse
Plug-in
	 After installing the WebLogic-
Eclipse plug-in we’ll configure the
plug-in in the Eclipse IDE. First, create
a project with which the WebLogic

plug-in is to be configured. Select
File>New>Project. In the New Project
frame select Java>Java Project and
click the Next button. In the Create a
Java project frame specify a project
name and click the Next button. In
the Java Settings frame add a source
folder for the project. Click the Add
Folder button. In the New Source
Folder frame specify a folder name. A
message frame prompts to set the bin
folder as the build output folder. Next,
add the libraries required for the proj-
ect. The example application requires
the J2EE JAR in the classpath. Select
the Libraries tab and click on the Add
External JARs button.
	 Add the J2EE 1.4 j2ee.jar file to the
project. The j2ee.jar gets listed in the
project Libraries. Click the Finish but-
ton to complete the configuration of
the project. A project gets added to the
Eclipse IDE Package Explorer view.
	 Next, we’ll specify a Web-
Logic Server configuration. Select
Window>Preferences. The Prefer-
ences frame gets displayed. Select
the WebLogic node. In the WebLogic
preference page select the version of
the WebLogic Server to be configured.
Specify the different field values,
which are listed in Table 1. The values
may vary depending on the directory
in which the server is installed and in
which the domain is configured. Click
on the Apply button to apply the speci-
fied values.
	 If any JAR files have to be added
to the server classpath, select the
WebLogic>Classpath node. JAR/Zip
files or directories can be added
before the WebLogic libraries or after
the WebLogic libraries. Select the
WebLogic>JavaVM Options node to
specify JavaVM options. For example,
modify the weblogic.ProductionMo-
deEnabled property. Set the property

Plug-ins

by Deepak Vohra and Ajay Vohra

Configuring the
WebLogic-Eclipse Plug-in

T

Designed to run the WebLogic Server from the Eclipse IDE

Deepak Vohra is a

Sun Certified Java 1.4

programmer and

Web developer.

dvohra09@yahoo.com

Ajay Vohra is a senior

software engineer

with Compuware.

ajay_vohra@yahoo.com

JDJ.SYS-CON.com38	 July 2006

value to false to start the server in
development mode. Click on the Apply
button to apply the JavaVM options.
	 Next, specify the projects to be
debugged with the WebLogic Server
configuration. Click on the Add but-
ton. Select the projects to be added to
the plug-in configuration. To debug
a project, the project has to be in the
plug-in configuration. Click the OK
button.
	 The selected projects get added to
projects list. Click on the Apply button
and then the OK button. The WebLogic
plug-in gets configured with a project
and the WebLogic Server.

Developing and Debugging a
WebLogic Application
	 After configuring the WebLogic
plug-in, develop a J2EE application
to deploy and debug in the WebLogic
Server. The example J2EE application
consists of a Session EJB and a client
servlet. The J2EE application is avail-
able in the resources zip file (source
code for this article can be found by
viewing the article online in the WLDJ
archives, http://wldj.sys-con.com/
read/issue/archives/, Vol. 5, iss. 2).
Extract the resources zip file to a direc-
tory. In the Eclipse project EclipseWe-
bLogic, which was configured in
the previous section, import the src
directory of the J2EE application with
File>Import. In the Import frame se-
lect the File System node and click the
Next button. In the File system frame
select the directories/files to add to the
project and click the Finish button.
	 The example J2EE application files
get added to the project. Build the
project with the Ant build.xml file.
Right-click on the build.xml file and
select Run>Ant Build. The J2EE ap-
plication gets built and deployed in the
WebLogic Server applications direc-
tory. Next, start the WebLogic Server in
the Eclipse IDE with Run>Start Web-
Logic. The Session EJB/Servlet applica-
tion gets deployed in the WebLogic
Server as listed in the applications
node.
	 Run the WebLogicServlet in the
browser with the URL http://local-
host:7001/weblogic/webLogicPlug-
in. The output from the servlet is
displayed in the browser. Next add an
exception (a NullPointerException) to
the client servlet to demonstrate the
debugging feature of the WebLogic
plug-in. In the WebLogicServlet servlet
replace

out.println(sessionEJB.getEclipsePlug-

in());

with

String str=null;

out.println(str.toString());

	 Add a breakpoint to the servlet with
Run>Add Java Exception Breakpoint.
In the Add Java Exception Breakpoint
frame select the NullPointerException.
Delete the previous build directory
and build the application with the
build.xml. Select the Debug perspec-
tive. In the Debug perspective the 	
WebLogic Server is shown to be run-
ning at localhost host.

	 Run the example servlet (with the
NullPointerException) in the browser.
Because the servlet has an exception the
server gets suspended and the Debug per-
spective displays the NullPointerException.
The application can be debugged with the
debug features in the Run menu item.

Conclusion
	 Thus the WebLogic Server gets
administered from the EclipseIDE with
the WebLogic plug-in and applications
deployed in the server are debugged
from the Eclipse IDE. A limitation of
the WebLogic plug-in is that debug-
ging JSPs isn’t supported. The 2.0 ver-
sion of the plug-in will have additional
features.

 Figure 1

Table 1 WebLogic Eclipse plug-in

Field	 Description	 Value
BEA Home	 The BEA installation directory	 C:/BEA
WebLogic Home	 The WebLogic Server installation directory	 C:\BEA\weblogic81
Domain Name	 The WebLogic domain	 mydomain
Domain Directory	 The WebLogic domain directory	 C:\BEA\user_projects\domains
			 \mydomain
Server Name	 The WebLogic Server name	 myserver
User	 User to login to the WebLogic Server	 weblogic
Password	 Password to login to WebLogic Server	 weblogic
Hostname	 WebLogic Server hostname	 localhost
Port		 WebLogic Server port	 7001

39July 2006JDJ.SYS-CON.com

ou’re six-feet, 190 pounds and
can type System.out.println
faster than most people can
say AJAX. You’re a person who

dreams about the Milwaukee Brewers
winning the World Series and the cor-
rect data structure to be used when
talking about a baseball player. You’ve
spent five years of your life writing Java
code and leading Java development
teams. You consider yourself an expert
in Swing, Struts, XML, and XSL-FO
and feel comfortable talking about
any other buzzword in the Java world
such as JSF, Portal, and AJAX. You’ve
had experience as development lead
on a team with anywhere from three to
seven people where Java applications
were rolled into production well within
the scheduled deadline. Now you have
received a management position on
an internal Java development team.
Where do you start? What things do
you look at from day one? What’s your
role going to be as a manager? What
would you like to see happen within
your team? Do you want to keep your
technical skills? How do you rate your
employees at the end of the year?
	 These are just some of the question’s
that you’ll have to answer.
	 Fortunately, I’m the Brewers fan
who just got a new first-line manage-
ment position. The team that I’m
managing consists of 18 employees
with skillsets ranging from Java Swing
development to J2EE Web develop-
ment. The main point of our existence
is to create, support, fix and build tools
inside IBM for a number of platforms.
A number of small tools have already
been developed that use Swing tech-
nology for the front-end. The small
tools end up communicating with DB2
systems on the back-end and start a
number of native back-end processes

depending on the back-end servers’
platform. The team has also created
a Web application that lets internal
developers create a fix pack of a par-
ticular product. These are examples
of just a couple of the many Java tools
that my department is responsible for.
	 Now back to the questions at hand.
Where does a manager start when
taking over a Java development team?
These are just a couple of the things
that concerned me when coming in as
manager of a Java development team.

Who’s Doing What?
	 Every manager has to understand
what the main responsibility of the
team is. Once that’s understood then
the next question to answer is, who is
working on achieving that goal. What
positions have been defined in the
department to carry out the team’s pri-
mary responsibility? For instance, do
you have developers working on a sin-
gle application from the beginning to
end or do you have each software de-
velopment process task broken down
among different employees. Once you
understand the tasks that everyone is
working on, does it matter how they’re
done? For example, the team that I’m
managing has application owners who
are responsible for the entire develop-
ment process lifecycle for a particular
application. An application owner
would have to gather the new require-
ments that come in, create a design
that fits into the existing application
design, develop, unit test, and do the
production test. And if an external
customer discovers a problem with the
tool it’s their responsibility to fix it.
	 Some things I’ve heard from the
group is that testing all our small
tools is quite expensive. Every small
tool is dependent on each other. New

functionality added to one of them
may have an impact on another, thus
causing all application owners to test
their code before it’s released.
	 From a resource perspective this
really scares me. You wouldn’t like
your most experienced developers
spending a lot of time on testing. Some
would disagree with me on this and
say that this person has the applica-
tion domain experience and should
be involved in production testing.
However, I feel that testing something
like this should be documented in
a test plan and tested by a separate
group. Test cases could be written by
this separate group cross-referencing
the requirements. That way a different
set of eyes could manually test the
application outside of the application
owners who should only do unit test-
ing.

Is There a Development Process?
	 As the manager of any software
department I would hope so. Hardcore
software developers hate processes. I
know this from past experience. When
I was given an assignment, I wanted to
complete it as fast as I could by writing
code. If you wanted to know my prog-
ress all you had to do was ask. I felt the
information in my head was sufficient.
However, this kind of thinking makes
things very hard when working on a
team that’s larger than one person.
Information has to be communicated
from one person to another. The
memory of what someone said lasts
only so long. Having documentation
helps remind an employee of what’s
required. It helps for reviews and
lets an employee hand his work off if
something happens and he’s pulled
from the project.
	 Without a development process

Development

Benjamin Garbers

Java Techie
to Manager

Y

You’ve got the job now what do you do?

Ben Garbers is

currently a 1st line

manager at IBM where

the department he

manages creates

and maintains Java

standalone applications

and dynamic Java web

applications run on

Websphere. Before his

management position

he was the lead devel-

oper on a number of

teams that developed

standalone Java

applications.

garbersb@us.ibm.com

JDJ.SYS-CON.com40	 July 2006

it’s even harder to rate employee per-
formance. Who is your best designer?
Who is your best coder? By defining
a development process, the strengths
and weaknesses of each employee can
be measured at particular stages of the
development process. Running a tool
suite that does metrics throughout a
development process can be used to
measure performance. Tracking and
monitoring this kind of information
will also help you understand the task
force needed for a particular project.
For instance, if a manager knows how
long it took for an application to be
finished with a particular number
of employees, it makes it easier to
estimate how long it will take those
employees on the next project.
	 The team that I’ve inherited has an
ad hoc development process. There’s
no standardized format of what’s
required in each development phase.
For instance, Team A could have a
requirements document that looks
different from Team B’s requirements
document. Does something like this
need to be standardized throughout
the development process? Some
would argue that as long as there’s
documentation for each develop-
ment stage it shouldn’t matter. They’d
also argue that the format of each
document should be up to the project
lead. However, if you have employees
switching from one team to another,
this may become an issue. It may take
an employee some time to understand
a format that’s different from what
they used in a prior project. From a
management perspective it’s always
nice to standardize the format in a tool
that can run some kind of metrics. For
example, if a requirements document
is submitted with a tool, metrics could
be run on how good the document ac-
tually is. When a review is held for the
requirements document, the number
of problems found in the require-
ments document could be traced and
analyzed by a manager. This could be
a perfect way to isolate the employees

who have strong requirements-gath-
ering skills. As a manager, I feel it’s a
priority to make sure our development
team has a standardized format for all
development process milestones.

Are Swing Applications Old?
	 First of all why would a manager
even care about Swing applications? As
long as the development lead knows
when to change from Swing to a more
Web-centric application, why should
a manager even care? The reason I
ask this is that you have to remember
I come from a technical background.
I feel that if a strategic decision has
to be made on which technology we
should use, I’d like to be part of it. If I
were the type of manager who thought
Swing was something for my two-year-
old son then of course you wouldn’t
want me in the discussion at all.
	 We have a number of Swing-based
applications that are used by our inter-
nal customers and by administration.
The Swing-based applications follow a
fix process required by every internal
developer who wants to create a fix.
This fix process is very complicated
and requires an internal developer to
run a number of the Swing applica-
tions so a fix can be created, tested and
deployed to external customers. There
have been a number of developers
who have implemented additional
functionality within the Swing ap-
plications. Over time, this has made
some of the code hard to read. There
is logic that is duplicated because a
developer was not aware of particular
methods that already existed. There
are also a number of classes that were
implemented that do not fit within the
old design because of the changing
functionality. Instead of enhancing the
old design, now a new design and old
design exist within the application.
This, of course, has nothing to do with
the debate over whether Swing-based
applications are old but does create
additional work if you were to migrate
the applications from Swing to a

Web-based tool. Time would have to
be spent to understand the differ-
ences between the old design and new
design. Eventually, a design bringing
both of them together would have to
be created.
	 From a manager’s perspective I see
a couple of questions that have to be
answered when looking at migrating
Swing applications to Web applica-
tions. First, does my customer need
this? Currently, a number of different
commands are run on an AIX or Win-
dows command line to run the Swing
applications. The internal custom-
ers feel it’s easier to go to a browser
instead of understanding command-
line syntax to run the applications.
	 Do I have the skillsets on my team
to transfer the Swing application to a
Web-based tool?
	 My team is very skilled in Java
and has experience in creating Web
applications. I worry that there’ll be
problems transferring all the logic
from the Swing-based applications to
the Web-based applications correctly
because of the current design prob-
lems that exist. However, this would be
a perfect time to analyze the problems
and correct them.
	 Are there enough people on my
team to do this? This is the extremely
hard part of being a manager. Esti-
mating how long a project can take is
not a fine art. If the estimation isn’t
done properly, time is wasted or not
enough employees are allocated.
The migration requirements must
be gathered and sized. Once sized, a
manager must support his develop-
ment leads with the resources that
they need.
	 These are just a couple of the things
that I’ve chewed on my first month of
experience. Perhaps, other first-time
managers have had the same things
happen in their department. Making
management decisions is not an exact
art but hopefully the situations I’ve
described give you an idea of one ap-
proach.

“Where does a manager start when
taking over a Java development team?”

41July 2006JDJ.SYS-CON.com

esting Java code is increasingly a task taken on by
developers rather than separate teams to which
the programs are handed. Many Java developers
are now familiar with JUnit and know the different
between unit tests and integration tests. This has

been driven largely by the focus on test-driven development
(TDD) in extreme programming (XP) and other agile software
development methodologies. While the industry-at-large has
recognized the value of unit tests and has a new outlook on
testing in general, for the most part, actual TDD (meaning,
the tests are written first) is not usually practiced outside of
hardcore agile shops.
	 In this article, we’ll present a specific example (based on a
real-world scenario that we recently faced) and walk step-by-
step how to take a pure TDD approach and hopefully show
the benefits of embracing TDD completely in this scenario.
(For a clear and concise explanation of some of the major
benefits of TDD in general, see http://www.extremeprogram-
ming.org/rules/testfirst.html.)

The Scenario
	 This scenario is modeled closely on one we faced at a cli-
ent site recently. In short, we were a pair on a development
team working on a project with typical issues:
1.	A deadline/delivery date had been set
2.	Little or no requirements existed and
3.	It didn’t look like we’d be getting requirements any time

soon (due to limited staffing, etc.).

	 The project goal was to build a marketing Web site around
the client’s existing feed management product. At a high level
and besides product marketing, the Web site should include
basic information and some rudimentary services related to
Web feeds (RSS, Atom, etc.). The list of services included:
1.	A “feed finder” service: the user must be able to enter

a URL somewhere on the site that will produce a list of
candidate feed URLs that it found at that URL.

2.	A “feed validation” service: the site will analyze a user-
provided URL and inform the user if the document found
at that URL is a valid RSS or Atom feed.

	 To mimic the last-minute changes in requirements we’ll
imagine that a business stakeholder stopped by our cubicles
and provided some additional information this morning: the
site must have a “coolness” factor, i.e., make the site an active
Web 2.0/AJAX site. A new person has been hired to handle
the user interface, HTML and JavaScript; our job is to build
remote components that will implement the services listed
above.

Constraints
	 The client’s standard production platform is Java 5, JBoss
4.x, and MySQL 4.1 on Red Hat Linux. We’re supplied with a
workstation running Windows XP Pro, Eclipse 3.1, Java 5, and
JBoss 4.0.1.

Decisions
	 We decided to assess the risk level of each service. RSS
and Atom standards are well known and there are a variety
of tools that we can probably use to implement the “feed
validation” service, which doesn’t feel that risky. The “feed
finder” service feels much riskier since there are many
ways to detect a candidate feed for a supplied URL, some of
which are:
1.	We can try to discover the feed from the HTML docu-

ment at the supplied URL using <link> elements in the
HTML <head> section;

2.	We can spider the URL’s Web site for common feed file
names like rss.xml, atom.xml, rdf.xml, feed.rss, etc.;

3.	We can try to get the feed URL by using a Web Service
like Syndic8’s XML-RPC services.

	 We’re not too worried about the service interfaces with
the AJAX pages; we know we’ll probably have to write a
servlet that accepts a GET or POST request with a URL
parameter. And while we’re not sure if we’ll use XML or
plain text in the response, we think that’s a straightforward
problem. We proceed to tackle what we think are the risky
unknowns (like how to find feed references from a docu-
ment) and start by writing a test for the discovery method
of “feed finding.”

T

Write Right Java Faster Using
Test-Driven Development
The benefits of embracing TDD by Richard Cariens

& John Evans

Richard Cariens is an

independent software con-

sultant in the Washington

D.C. area (www.jpevans.

com). He has over 10 years

of experience testing,

developing, designing,

and architecting Internet

technology and financial

systems. Rich holds an MS

in computer science from

George Mason University in

Fairfax, Virginia.

John Evans is the founder

and president of JPEvans,

Inc. (www.jpevans.com),

a small independent com-

puter consulting company

based in Northern Virginia

just outside of Washington

D.C. John has over 10 years

of professional experience

in software development.

He has successfully de-

veloped and deployed large-

scale software systems for

several large multi-national

corporations.

JDJ.SYS-CON.com42	 July 2006

Getting Started
	 We think it will be easier to write the tests if we break up
the service into two discrete steps:
1.	Download the HTML document from the supplied URL;
2.	Parse/search the document for <link> tags with “type”

attributes of “application/rss+xml,” “application/
atom+xml,” “application/x.atom+xml,” or “application/x-
atom+xml.”

	 First we create a simple empty Eclipse project for our feed
finder and add a new JUnit Test Case (see Figure 1). Then we
call the test “FeedAutoDiscovererUnit”.
	 For starters, we add a test for detecting RSS links that auto-
matically fails (since we don’t have anything to test yet) and
we’re ready to start defining success and failure criteria.
	 Note that even though we haven’t written any application
code, we know that we’re probably headed towards creating a
class called FeedAutoDiscoverer and that we’re expecting this
class to be able to find an RSS link in a document.

Writing the Test
	 Now we have to generate some input HTML that con-
tains a <link> tag with a type of “application/rss+xml” (the
Atom test will come later). We add a simple in-line HTML
document that contains the expected link to our “testFind-
sRssLink” method.
	 Now we’re ready to introduce the component that will
implement the discovery logic. We replace the “fail” state-
ment with a call to an instance of a class called FeedAuto-
Discoverer. We decide that this class should implement a
method called “discoverLinks” that accepts a string and
returns a list of strings. We also add assertions that help us
know if the FeedAutoDiscoverer discovered the RSS link
type correctly:
1.	We know that our test input only has one <link> tag in it

so we assert that the FeedAutoDiscoverer returns a list
with one element;

2.	We know that our test input contains a <link> tag with a
specific “href” attribute and we want to see that expected
href value in the list (see Figure 2).

	 Note the red decorations on the test source. The FeedAuto-
Discoverer class doesn’t exist yet so let’s use Eclipse’s “quick-
fix” capabilities to create it for us from this test (press Ctrl + 1
while the red-underlined code has cursor focus).
	 We tell Eclipse we want this class to live under the “src”
source folder instead of the “tests” folder and then let the
wizard generate the class for us.
	 Once the empty FeedAutoDiscoverer is generated, we still
find we can’t compile our test because the method “discover-
Links” method doesn’t exist. We let Eclipse generate this for
us as well (see Figure 3).
	 Eclipse generates an empty method for us with a handy
“TODO” reminder that we’ll eventually have to change this
method.
	 The test will now compile and is ready for its first run. Of
course it will fail, but that’s to be expected since our Feed-
AutoDiscoverer just returns null.

 	 Now that we’ve written the test, we can focus on making
the test pass.

Making the Test Pass
	 We’re going to try to write the simplest code that will make
the test pass. We know there are several ways to detect a
<link> tag in an HTML document:
1.	We can sub-class the HTMLEditorKit.ParserCallback

from the javax.swing.text.html package;
2.	We could use a third-party HTML/XML parsing library

like TagSoup, HotSax, NekoHTML, JTidy, etc;
3.	We could use regular expressions and other “brute force”

techniques.

	 We decide to go with option 3, specifically Java regular ex-
pressions, since there’s some resistance to introducing a new
and uncertified framework at the client site. We start fleshing
out the FeedAutoDiscoverer by making sure it returns a list
of strings. We know that the regular expression must match
<link> tags with a “type” attribute of “application/rss+xml.”
We’ll also want to extract the “href” attribute from all match-
ing tags, so we should be sure to wrap the “href” attribute
value in a capturing group. Our first version of the FeedAuto-
Discoverer looks similar to Figure 4.
	 Lucky for us, the test passes!
	 After congratulating ourselves on our success, we realize

 Figure 1 Creating the first test

 Figure 2 Test-driven design

43July 2006JDJ.SYS-CON.com

Feature

that the <link> attributes might appear in any order and with
embedded new lines. We decide to write a second test to
handle this new scenario. This test case switches the “type”
and “href” attribute ordering and adds a new line between
them.
	 Sure enough, we find that our FeedAutoDiscoverer doesn’t
handle this scenario; the new test fails.
	 We open up the FeedAutoDiscoverer and tweak the regular
expression so that it’ll hopefully handle the new scenario:
1.	We add an OR operator to the original expression and

switch the order of the “type” and “href” attributes in the

new half;
2.	We add the DOTALL flag to the expression, which allows

the ‘.’ character to match new lines.
	 Now the FeedAutoDetector looks like Figure 5.

	 Running the test again results in failure, but it looks like the
regular expression may have worked since it’s the contents
of the list that are wrong. Reviewing our changes shows us
that we forgot to update our capture group handling. We have
two capture groups in the regular expression and have to add
the proper group contents depending on which half of the
regular expression worked, so we change our logic.
	 We find that the test now passes and we’re ready to move
on to adding more tests for auto-discovering Atom link refer-
ences, etc.
	 There’s a lot more to do, but we’re well on our way to deliv-
ering the site “Feed Finder” service. If we wanted to, we could
stop here with auto-detection and start building out the
downloader component and the servlet, or we could extract
an interface from the FeedAutoDiscoverer and start work
on fitting it into an IoC container like Spring. Whatever we
decide to do, we now have two tests that we can use to sanity-
check changes we make from this point forward that might
impact feed auto-discovery. If these tests continue to pass as
we change the system (and we should run our tests often),
we’ll become more confident and comfortable with handling
change.
	 (As an aside, at this point in real life, we discovered that
there was actually a spec for ATOM-based feed auto-discov-
ery at http://philringnalda.com/rfc/draft-ietf-atompub-au-
todiscovery-01.html. So, we took each of the examples in the
RFC and coded them up as unit tests, and made sure that our
FeedAutoDiscoverer successfully discovered them.)

Conclusion
	 Test-driven development helped us in many ways on this
project:
 1.	It forced us to translate our ambiguous requirements into

verifiable test criteria;
2.	The test criteria helped us focus on doing just what was

needed to pass the test, and thus hopefully satisfying the
requirements;

3.	We avoided the heavy front-loading of design documen-
tation and focused on getting some working code.

	 While we’ll ultimately write more code with this approach
we’ll have fewer defects in the end product. Testing early will
also help us uncover requirements errors or changes that would
be expensive to address in the later stages of the project.

References
• http://extremeprogramming.org/rules/testfirst.html
• http://extremeprogramming.org/stories/testfirst.html
• http://en.wikipedia.org/wiki/Test_driven_development
• http://www.testdriven.com/
• http://www.aaronsw.com/2002/feedfinder/
• http://www.syndic8.com/web_services/
• http://java-source.net/open-source/html-parsers
• http://mercury.ccil.org/~cowan/XML/tagsoup/

 Figure 3 Generating the method

 Figure 4 A good start

 Figure 5 Capture group handling

JDJ.SYS-CON.com44	 July 2006

2 3

C
O

P
Y

R
IG

H
T

 ©
20

06
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

ne of the phrases that has al-
ways puzzled me is “business
logic”. It seems to crop up a
lot in presentations, articles,

sales pitches and so forth. The one I
saw it in most recently was a talk about
how great web servers are because they
keep all of the business logic on the
server where it can be robust, secure,
and logged. By analogy the client is a
poor place for business logic because,
while it can do richer things with the
user interface, all of the core rules
must be kept on the server.
	 It’s not the first time I’ve come
across server heads who use this
argument, that their box has to be
the gatekeeper for all of the hard and
important corporate logic. By using
the adjective “business” they’re sort
of belittling the desktop in any client
server equation to be good for nothing
more than fancy editing controls and
salad dressing the user experience.
	 The problem is that often when you
push people for what business logic real-
ly means, it boils down to something like
“this value can’t be larger than the sum
of these values” or “this date can’t be be-
fore this date for this kind of transaction”.
It’s an answer that more often than not
sounds to me like something the GUI is
not only perfectly capable of doing, but
is probably most sensibly done on the
desktop. After all, it can notify errors in-
stantly on mouse and keyboard events,
and provide completion assistance and
help without incurring the latency of an
expensive server round trip.
	 Wikipedia describes “business logic”
with the following sentence:

“Take a spreadsheet, for example. The
spreadsheet in itself is a generic tool and
embodies no business logic as such. When
you use the spreadsheet by encoding formu-
las which calculate values of importance to
your organization, then you are encoding
business logic”

	 For any server guy reading this, a
spreadsheet is a desktop application.

However, the key phrase in the defini-
tion above is “importance to your
organization, then you are encoding
business logic”.
	 From that definition I think that
all code any of us have ever written
is business logic. I assume of course
none of us have ever written stuff that
wasn’t important to whichever orga-
nization was paying our salary at the
time.
	 Why then is there such a mys-
tique about the phrase ? I think it’s
because as soon as the adjective
“business” is placed around some-
thing it means that it’s more impor-
tant to the organization and therefore
attracts the attention of managers,
accountants and analysts. Busi-
ness modeling is something done by
analysts (proper analysts, not people
who write specs for programs that
developers have to stay at work late
and write) where they take apart the
mechanics and structure organiza-
tion of an organization in attempt
to apply change management and
restructure its processes to be more
efficient and cost effective in future.
A Masters of Business Administra-
tion studies for three years or more
to understand this in depth, hoping
for a destiny in the echelons of senior
management to perfect and apply
their skills. There are even execu-
tive MBA programs for those who are
aiming even higher up the corporate
ladder. I wonder whether MBAs drill
into people a subliminal Pavlovian
association that make its graduates
salivate each time the word “busi-
ness” is used to prefix an otherwise
boring task, such as coding spread-
sheet cells.
	 It’s not just business logic that one
can dissect in this way, but there are a
slew of terminologies such as “busi-
ness process execution language”,
“business event publishing”, or “busi-
ness process modeling notation”. If
you dig hard enough behind the sea of
white papers and PowerPoint charts

surround these however, you’ll find
that at the core of each is some plain
old-fashioned, unfashionable, boring
old code. “When value foo reach val-
ues a limit moo write value foo*100 to
buffer boo that program goo reads and
updates database yoo with”.
	 There is benefit in abstracting lines
of code to higher level units. Both
from the benefits of modularity and
re-use, while object-oriented program-
ming further reifies blocks of work
to become recognizable tasks and
functions around anthropomorphic
functions. What troubles me though,
is when just because someone has
grabbed a trendy name for what’s basi-
cally just code, and then denigrates
those who aren’t using their coding
technique as being fat, thick, poor, or
whatever other insult they can dream
up, allowing them smugly preaching
the benefits of the new “business logic
application hardware” (BLAH) tech-
nique they created with impunity.
	 We all write business logic. From
games programmers, to COBOL guys,
through Java, Visual Basic, and spread
sheet macro heads. A good rule of
thumb I think is to always apply the
wikipedia test, which is when coding
or designing, to continually question
the importance of what you’re doing
to the organization for whom the pro-
gram is being built.
	 Business logic can, and does, run
anywhere, in any language, on any
platform. Next time you see an over the
top presentation being given by some-
one who dresses up their newfangled
architecture with the “business” adjec-
tive start questioning them hard and
peel back the layers of their onionware.
You’ll find that behind the robes there’s
just some code served up in an alpha-
bet soup of acronyms to make it current
and confusing. Then question whose
benefit this is for. The customer for
who the application is going to work, or
the company whose consulting services
are behind the presentation. Seems
pretty logical to me.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Who does
Business Logic ?

O

Joe Winchester is

a software

developer

working on

WebSphere

development tools

for IBM in

Hursley, UK.

joewinchester@
sys-con.com

JDJ.SYS-CON.com46	 July 2006

24/7

Visit the

Website Today!

24/7

y now, you’ve probably heard
about Eclipse as “the Open
Source Java IDE” (http://www.
eclipse.org). Today, several
companies have looked past

the Java IDE plug-ins provided as part
of Eclipse, and are creating products
that use Eclipse as a tool integration
platform, both inside and outside of
the Java arena. But what about using
royalty-free, Open Source Eclipse tech-
nology as a general-purpose applica-
tion framework for your next desktop,
fat client, or embedded application?
With the support provided by the
Eclipse Rich Client Platform (RCP)
and the embedded version of the
same (eRCP) the idea is certainly not
as strange as it first sounds. So we’ll
explains why Eclipse is a solid desktop,
rich-client, or embedded application
framework with the potential to greatly
simplify and accelerate development
as well as forever change the way
developers think about writing Java
applications.
	 Software development is often
about compromises. Currently, one
of the most visible debates centers
on the tradeoffs between productiv-
ity applications and browser-based
UIs. In spite of what current media
coverage might lead one to believe, the
industry hasn’t decided to throw away
all its desktop applications in favor
of browser-based UIs rendered with
some combination of HTML/XML/
XSLT/Javascript. The reason can be
summed up in three words: “the user
experience.” Form follows function…
is the key criteria for judging usability.
In practice, high user interactivity
or complex data relationships make
delivering user interfaces as a desktop
application less of a choice and more
of a requirement.
	 In today’s computing environments

it’s important to deliver user inter-
faces that can run on a wide variety
of platforms. The range is broad
– including small handheld devices
as well as server consoles. When us-
ers interact with applications in the
window management environments
they’re most familiar with, using the
application must feel natural and
predictable.
	 Building a productivity application
means starting with a good design and
a supportive architecture. Since there’s
no universally accepted application
framework, most developers design
their own architecture and then build
it into a framework. However, the
cost of this approach is considerable
expense, time, debugging, support,
and aggravation expended on solving
a problem that’s peripheral to building
the functionality of the intended ap-
plication.
	 A much better approach than “roll-
ing your own” application framework
would be to find one that could
fulfill the design requirements while
simplifying and accelerating project
development. A “wish list” for such a
framework would likely contain the
following:

•	 Implements a clear, consistent, and
cohesive architecture

•	 Supports development and execu-
tion on all the major desktop plat-
forms (Windows, Mac OS X, Linux,
QNX Photon, Pocket PC, HP-UX,
AIX, Solaris)

•	 A snappy UI response that main-
tains the platform’s native look-and-
feel

•	 Provides a large variety of widgets,
both standard (i.e., button and
checkbox) and extended (i.e., tool-
bar, tree view, and progress meter)

•	 Provides extensive text processing

that includes editors, position/
change management, rule-based
styling, content completion, format-
ting, searching, and hover help

•	 Supports using platform-specific
features (i.e., ActiveX) and legacy
software, if desired

•	 Enables branding the application
•	 Contains an integrated help system
•	 Manages user configuration and

preferences
•	 Supports remote discovery and

installation of application updates
•	 Created and backed by respected

software companies experienced in
creating object oriented frameworks

•	 Supports internationalization and
national language translation

•	 Designed for flexibility with natural
features for adding new functional-
ity

•	 “Pay” only for what you need – base
frameworks can be easily reduced
as well as extended to tailor capa-
bilities to precise requirements

	 To complete our “wish list” we
might as well add that the technology
be used and supported by a multi-in-
dustry charitable foundation, created
and maintained by an Open Source
community, royalty-free and licensed
to provide worldwide redistribution
rights. Although these requirements
may sound like a pipe dream, it’s likely
that Java application developers al-
ready have this incredible application
framework installed. It’s Eclipse.

Can Eclipse Be Used as an
Application Framework?
	 The Eclipse Project FAQ say “The
Eclipse Project is an Open Source soft-
ware development project dedicated
to providing a robust, full-featured,
commercial-quality industry plat-
form for the development of highly

Open Source

Todd Williams

Eclipse: a Solid Desktop, Rich-Client,
or Embedded Application Framework

B

A general purpose platform

Todd Williams is

Genuitec’s VP of

technology and leads

its Eclipse Technology

Consulting Practice.

He has over 20 years of

industry experience in

developing comput-

ing infrastructures,

large-scale distributed

software architectures,

and optimizing develop-

ment processes, tech-

niques, and tools. Todd

has been Genuitec’s

representative to the

Eclipse Foundation

since 2002 and cur-

rently holds an elected

seat on the Eclipse

Foundation’s board of

directors.

JDJ.SYS-CON.com48	 July 2006

integrated tools.” So by definition,
Eclipse is an open platform for tools
integration, not an IDE. The issue has
been confused because a complete in-
dustrial-strength Java IDE is available
in the Eclipse Platform in the form
of plug-in components that extend
Eclipse’s basic framework facilities.
	 Eclipse provides the framework for
combining disparate tools into a single
integrated application with a seamless
user interface. New tools are inte-
grated into the Eclipse Platform and
its user interface through plug-ins that
extend Eclipse’s facilities and provide
new functionality. Eclipse plug-ins can
also extend other plug-ins. When an
Eclipse-based application initializes, it
discovers and activates all of the plug-
ins that have been configured for the
environment. An Eclipse application is
quite literally the sum of its parts since
it’s capable of performing any function
that has been added to it by the plug-
ins it currently contains.
	 Since being able to write and test
such plug-ins is essential to the suc-
cess of Eclipse, the Eclipse Platform is
bundled with a plug-in development
environment (PDE) and a set of Java
development tools (JDT) to support it.
Eclipse’s developers clearly trusted the
power of the frameworks they created.
The entire development environment
is just another set of tools integrated
into the platform using the standard
plug-in techniques. The Eclipse
Platform itself was itself created by
developers using the Eclipse-based
Java IDE (initially in beta form). And,
since it’s Open Source, anyone can in-
spect the code and understand in great
detail exactly how the frameworks are
supposed to be used.
	 It’s this practice of packaging the
development tools with the platform
that causes some people to be con-
fused about the nature of Eclipse. The
JDT components are so effective that
they’re attractive to all Java develop-
ers, not just those writing plug-ins.
On the surface, Eclipse appears to be
just an excellent Java IDE. But instead
of thinking about Eclipse simply as
a Java IDE, try to think about it as a
productivity application that happens
to include a Java IDE built using the
underlying Eclipse Platform as an ap-
plication framework.

Eclipse Framework Features
	 Eclipse embodies an extensible
design that maximizes its flexibility as

an architectural platform. At its core,
the Eclipse Platform contains an ef-
ficient implementation of the OSGi R4
core framework specification known
as Equinox, which is used to boot-
strap the application. Up from that,
the Eclipse architecture defines sets
of layered subsystems that allow it to
be used as a framework for a portable
application (or suite) that’s not an IDE
at all. And, since the frameworks are
layered and coupled only at distinct
architectural interfaces, an application
can be built by combining only the
frameworks it needs, while eliminating
those that it doesn’t.
	 The following sections describe the
primary Eclipse features that make
it attractive as a general application
framework.

Extensibility Model
	 Requirements change over time so
developers often expend consider-
able effort designing applications so
that they’re flexible and extensible.
Eclipse is built around a highly flexible
and extensible plug-in model so any
type of capability can be added to
the platform. If an application can be
thought of as a tool, or set of tools, it
immediately becomes apparent that
its functionality can be added to an
Eclipse-based framework as a set of
plug-ins just as Eclipse’s native Java
IDE capabilities have been.

Content Model
	 Eclipse provides a content model
built around the concept of a work-
bench in which tools (capabilities)

can be installed. The tools operate
on resources organized into projects
in the workspace. Projects contain a
tree structure of resources, which are
folders and files containing any type of
content. The core platform provides a
large number of extension points that
allow the customization of all aspects
of resource lifecycle management.
	 The hierarchical, categorized
nature of the content model lends
itself to many kinds of productivity
applications with a bit of thought.
For example, a simple e-mail client
could be built on a workspace that
contains a single project associated
with the user’s e-mail account. The
user’s project could contain folders for
common functional e-mail elements
such as inbox, outbox, and sent items.
Each of these folders could contain the
corresponding set of e-mail messages
as project resources.

Native Widgets
	 The Eclipse platform contains a
standard widget toolkit, SWT, imple-
mented natively on all supported
Eclipse platforms. SWT contains a
large set of events, layout manag-
ers, and widgets. When a supported
platform doesn’t contain a native
widget supported by Eclipse, such
as a toolbar on Motif, an emulated
widget for that platform is provided.
SWT also interacts with native desktop
features, such as drag-and-drop. SWT
can also use OS-specific components,
such as Windows Active/X controls, if
such functionality is more desirable
than full platform portability. So far,

About Genuitec
Genuitec, LLC is an Eclipse-based company offering innovative Java and J2EE development tools. It offers

training and expert consulting and development services for the Eclipse SDK and rich client platforms. A

sponsor of Eclipse Plug-in Central, Genuitec joined the Eclipse Foundation early in 2003 and is currently on

the board of directors, actively participating in the organization’s strategic development and direction.

Genuitec was founded in 1997 and is headquartered in Plano, Texas.

About MyEclipse
An innovative, comprehensive, and affordable Integrated Development Environment (IDE) for Java, J2EE,

and open standards technologies. MyEclipse Enterprise Workbench is a full-featured enterprise-class

platform and tool suite for developing software applications and systems supporting the full lifecycle of

application development. Facilities and features usually found only in high-priced enterprise-class prod-

ucts are included in MyEclipse, which extends the best practices and technology available from the latest

Eclipse 3.1 SDK. Based on open standards and the Eclipse platform, MyEclipse redefines software pricing,

support, and delivery release cycles by providing a complete application development environment for

J2EE, WEB, AJAX, XML, UML, and databases and the most comprehensive array of application server con-

nectors (25 target environments) to optimize development, deployment, testing. and portability.

49July 2006JDJ.SYS-CON.com

SWT has been proven on the Windows
Win32 and Pocket PC, Photon, Motif,
and GNU window managers, covering
deployment platforms from high-end
workstations to embedded devices.
	 Although the Java language already
contains two widget toolkits, AWT and
Swing, the Eclipse group still chose
to implement their own. The detailed
reasons for this choice can be found
in the Eclipse Overview white paper.
However, to prove that this was the
right decision, all one needs to do is
compare the look-and-feel of a Swing
or AWT application of your choice with
that of Eclipse. Eclipse looks, feels, and
responds like a native application on
whatever platform it’s running on.

User Interface Framework
	 To build a graphical interface, SWT
can either be used directly or through
JFace, the user interface framework of
the Eclipse platform. JFace includes
dialog, preference, progress report-
ing, and wizard frameworks as well as
image and font registries that make
user interface creation very straight-
forward.
	 The Eclipse platform supports a
multi-window, MDI-like user interface
presentation. On top of JFace and SWT
the Eclipse workbench provides a frame-
work for building perspectives, editors,
and views that provide the structure for
user interaction. Editors handle resource
lifecycle interactions such as creating,
editing, saving, and deleting. Views
are used to provide supplementary
information about an object with which
the user is interacting. Examples include
outline, pending tasks, and property
views. A perspective is a stacked, tiled,
or detached arrangement of views and
editors. Only one perspective is visible
in a window at a time but you can open
multiple windows to view multiple
perspectives simultaneously.

	 The Eclipse user interface frame-
work is extensive, flexible, and
powerful. And, even if it doesn’t do
everything you need, it can easily be
extended in less time and with fewer
resources than designing and building
your own.

Update Manager
Historically one of the biggest prob-
lems associated with applications is
the support cost incurred to package,
distribute, maintain, and upgrade
the application as new versions are
released. This cost increases when a
large and dispersed user community
uses the application. With an offering’s

success and broad deployment, sup-
port after the sale can become time-
consuming and expensive.
	 Component maintenance and
upgrade facilities were part of the
design of Eclipse from the beginning.
To control ongoing cost and remove
maintenance issues that could become
barriers to project development and
deployment, the Eclipse platform con-
tains a flexible update manager. The
update manager can be configured
to initially install new components or
updates to existing components from
a remote server. As you release new
versions of your application or add-on
components, distribution can be as

Open Source

 Figure 1 An “empty” Eclipse-based application

 Figure 2 GumTree

 Figure 3 Eclipse Trader

JDJ.SYS-CON.com50	 July 2006

easy as packaging them using Eclipse
facilities and putting them on your
update server.

Help System
	 Every professional desktop applica-
tion has a help system for end users
and Eclipse is no different. However,
Eclipse’s help system isn’t simply built
from a static group of HTML files
that document Eclipse. Rather, it’s a
framework for providing both search-
able and context-sensitive help that’s
open to extension by documentation
plug-ins. As a result, for any applica-
tion built on Eclipse, everything’s
available for constructing, packaging,
and shipping a complete, custom,
context-sensitive help system without
buying third-party tools.

Using Eclipse as an Application
Framework
	 So starting with the underpinnings
of a Java IDE as an application frame-
work may at least sound possible, but
why would anyone do it? Well, Eclipse
satisfies the full function and facili-
ties wish list mentioned earlier, while
providing the program development
environment for building the project
as a series of Eclipse plug-ins. At the
outset the frameworks provide an
empty, featureless application that
is architecturally sound, extensible
for future enhancements, and can
upgrade itself remotely.
	 The main question then becomes
how much of Eclipse is required?
Simply stated, an application can
be built on the Eclipse framework
by removing functionality that’s not
important and adding functionality
that is. The more challenging part is
where to begin. The easiest cases are
in the extremes. For example, when
building a commercial IDE, like we do
with MyEclipse Enterprise Work-
bench, it makes sense to start with the
complete Eclipse Platform download,
as well as a few other Eclipse projects,
and build on top of them. At the other
extreme, when building an application
for an embedded device or any other
environment where size constraints
are paramount, then either Equinox or
eRCP would make a more reasonable
starting point. If the deployment target
has a few more resources, but still

don’t require the vast majority of the
platform’s features then using the RCP
(available from the platform download
page) as the primary framework is
likely the right starting point. With a
little configuration on the base RCP
you can quickly set up an “empty”
application, as shown in Figure 1, and
then concentrate on adding only what
adds value, rather than infrastructure.
	 Once the starting platform has been
determined, building an application
is simply a matter of writing plug-ins

to add features to the basic Eclipse
framework and branding them ap-
propriately for the intended audience.
For example, a large application is
typically written as multiple custom
perspectives and supporting views
using many plug-ins. Alternatively,
to integrate a suite of small applica-
tions, perhaps each one can be a single
perspective in its own plug-in. Along
those lines, Eclipse can also be used as
a portal to integrate all of a company’s
homegrown applications. The possibil-

Open Source

 Figure 4 Azureus

 Figure 5 Qanyon World Factbook

JDJ.SYS-CON.com52	 July 2006

ities are truly endless. And, just to
prove the point, here’s a very wide
assortment of Eclipse-based ap-
plications from all over the world.
	 GumTree is an Open Source
graphical user interface framework
for building scientific instrumenta-
tion consoles as shown in Figure 2.
	 EclipseTrader is an Open Source
set of plug-ins for the Eclipse RCP
dedicated to the building of an
online stock trading system, featur-
ing shares price watching, intra-day
and historical charts with technical
analysis indicators, level II/market-
depth views, news watching, and
integrated trading. The main view is
depicted in Figure 3.
	 Azureus implements the Bit-
Torrent client protocol through
Eclipse RCP plug-ins and comes
bundled with many invalu-
able features for both beginners
and advanced BitTorrent users.
Azureus is typically one of the
most downloaded applications at
SourceForge and interface looks
native on any platform, thanks to
SWT, as shown in Figure 4.
	 Qanyon World Factbook applica-
tion was written to explore using
Eclipse RCP in a distributed envi-
ronment. Similar to the CIA World
Factbook web site, the Qanyon World
Factbook should display country
information, albeit in a rich client
environment, as shown in Figure 5.

Going Forward –
What’s Next for Eclipse?
	 Eclipse is continuously evolving
and will continue to grow both
vertically further into the software
tools space and horizontally into
completely new market segments.
Interestingly, the growth into new
industry verticals will be for the
same reasons that Eclipse was
formed in the first place. Although
Eclipse was initially formed to
build an integration platform for
software tool providers, the sepa-
rate availability of the RCP changes
everything. Rather than being
a platform exclusively for tool
providers, Eclipse has become a
general-purpose platform that has
simply been leveraged initially in
the software tools arena. With this
seminal change, Eclipse will begin

drawing participants from other
verticals who want to cooperate
in the same way that the current
group of tool providers has. In the
near future I expect to see interest
in building infrastructure for pro-
ductivity applications, reporting
tools, security, process work-
flow, and business intelligence
among others. Now that Eclipse
is completely open and inclusive
across the entire software industry,
its membership and growth will
explode in the coming years.
	 Another vehicle of Eclipse’s
future growth will likely come from
completely outside the software
industry. Consortia from such
diverse industries as healthcare,
automotive, and finance regularly
set software platform and interop-
erability standards. However,
without a portable, cross-platform
implementation of the standards,
each consortium member must
independently construct its own,
solely based on the industry speci-
fications. This tremendous duplica-
tion of work is both expensive
and error-prone. Collaborating on
building a common set of speci-
fication-compliant infrastructure
would universally cut costs while
insuring interoperability. But what
competitors require before they can
cooperate is a level playing field
that benefits all of them equally.
When they begin to research their
options, they will find that Eclipse’s
maturity, extensibility, and royalty-
free redistribution model is very
attractive as the base for their col-
laborative development efforts.
	 Eclipse is constantly expand-
ing, evolving, and surprising all of
us. So much so that it would have
been impossible to envision where
it has gone in its first few years
of existence. And, going forward,
doing a reasonable job predicting
what is next for Eclipse seems just
as difficult. There’s only one thing
for certain; the future is arriving
every day and no one really knows
what it holds. Software visionary
Alan Kay once said, “The best way
to predict the future is to invent it.”
And, whatever the “next big thing”
is, one thing is increasingly likely;
it will be built on Eclipse.

“Eclipse is constantly
expanding, evolving,
and surprising all of us.
So much so that it
would have been
impossible to envision
where it has gone in
its first few years
of existence”

53July 2006JDJ.SYS-CON.com

’m going to share my experience of enabling a graphics-
oriented GIS visualization module with a C++ rendering
engine for a Java desktop application using JNI technol-
ogy.
The solution was implemented in the GIS library Ter-

raLib as part of the TerraLib Develoment Toolkit (Tdk), apply-
ing a JNI-bridged drawing canvas as part of the Components
API used by the rendering engine.
	 The solution gave the Java desktop application visual-
ization module a native equivalent performance and saved
a lot of duplicative effort in natively implemented render-
ing functionalities that could be accessed by the Java
application layer. It also promoted full integration between
the GIS visualization module and the application control
peer.
	 First I’ll present the architecture and then discuss how
JNI can be a great solution for a well-designed native layers
integration. I’ll also present, throughout the text, some
third-party solutions currently available, giving references
and links for more information on this still challenging mat-
ter.

The Architecture
	 The TerraLib Development Kit – Tdk – core is entirely writ-
ten in C++. It consists of a framework to make GIS develop-
ers’ experience with TerraLib easier. As a proof of usage for
Tdk, a visualization tool called VIPE (Visualization, Interac-
tion, Printing, and Editing) was successfully built with the
Tdk API. This native version of the application is quite stable
and designed over an event-oriented model. As we’ll discuss
later this was a key factor in the proposed solution. I took
advantage of that existing design and had the two mixed lan-
guage control layers communicating through JNI. The other
JNI touching point was restricted to the data layer to provide
native data state management directly from the correspond-
ing Java data layer. The latter became a very thin layer since
it only holds the state management operators (accessor and
mutator methods) and the JNI bridge to access the corre-
sponding native data container effectively holding the data
(see Figure 1).

Some Relevant Implementation Details
	 One very important implementation detail was the need
to have the rendering take place on the native visualization
layer where the data was formally accessible. But the user
experience is actually with a JPanel instance. That made us
take the risky strategy of keeping the C++ and Java control
layers communicating by sending application state control
and visualization UI events and finally applying the Bridge
pattern on the Canvas component to enable the native ren-
dering logic control over the Java Graphics2D-based render-
ing engine.
	 The Java control layer simply delegates the UI events over
to the native layer, which in turn does the response callbacks
to the Java Bridge through a jobject proxy. See Listing 1.
	 We ended up with JVIPE (Java VIPE) having equivalent per-
formance to the C++ version saving development duplication
related to rendering the Maps and Cartographic elements
– to mention a few. What we do now is implement first in C++
and bridge it to Java. The single data cache was also a major
achievement because it wasn’t possible with the previous
solution using CORBA. We basically succeeded on perfor-
mance and memory allocation too. The client application
inherited JVIPE functionalities through the Tdk Java API and
is currently in production.
	 The drawback is still the unavoidable conversion of the
geometry native data types to Java for plotting. I’m currently
checking JDK1.4 NIO features for the vector data blocks’ na-
tive access to the raster data types whose conversion is also
very costly.

JNI Analysis
	 Looking back at the process that resulted in this successful
solution I can risk some conclusions to pass on to those will-
ing to embrace JNI or analyze it against some other technolo-
gies.

Native Code Access from Java Analysis
	 The first question that we have to answer before deciding
to use JNI is when should we try to access native code in a
Java development scenario?

Mário de Sá Vera is

a software architect

and works as an IT

consultant in Brazil.

desavera@

netscape.net

I
Mário de Sá Vera

A JNI-bridged Java
Desktop Application
Native Performance and Java Control – Bridging Domain Gaps

JDJ.SYS-CON.com54	 July 2006

	 The answer isn’t as obvious as you may think. Code reuse
is a questionable issue. Moving to a modern programming
language will usually be a worthy move it because new
language efforts usually gather technological improvements
together and get rid of past mistakes. Experience says that
old libraries will eventually be migrated to modern languages
to be continued and improved. So the question becomes,
what kind of native code should we directly access against a
rewrite approach?
	 That question is a little simpler to answer. To answer it I’ll
risk generalizing two answers taken from a design decision:
1. Integration demands combined with manpower or time

frame limitations for rewriting the existing code in Java
(legacy case)

2. Java considerations for getting an adequate solution as a
whole (scratch time case)

	 We also mustn’t forget that not all that’s written in a legacy
native code can be accessed by Java. Generally speaking I’d
say that the best candidates for being kept or developed in
native code beforehand would be modules that implement
functionalities that Java has trouble with. I mean mostly
time-consuming code where Java performance misses
(despite JITs, we’re still buying new hardware, folks, and with
new hardware the native code will run faster!)
	 Now that we have some idea of when to bring a tower of
Babel to our code, let’s analyze some technologies.

The JNI Choice
	 From my point of view the first analysis to do in deciding
to use any technology is its applicability to the situation. It’s a
good approach considering we’ll make serious mistakes us-
ing a technology inadequate to our situation. So we could ask
ourselves if JNI is really the right technology to access native
code from Java.
	 JNI is a standard Java API. By definition Java demands
native resources access. Different technologies could replace
JNI however. I’ve seen some sites analyzing CORBA pros and
cons against JNI, and COM has been a choice for Microsoft
solution providers. But it’s best to analyze the situation you’re
trying to apply the technology to and then decide if it makes
sense.
	 The first candidate to bridge the two worlds was CORBA
since its IDL-based specifications provide language inde-
pendence and we could take advantage of the client/server
technology to create a distributed version of the application.
After a couple of weeks of implementing a CORBA middle
layer we ended up rewriting the caching model multiple
times and wound up with very poor performance and a du-
plicated cache (the data was loaded first into the native layer
and then into the Java visualization layer). All these problems
basically stemmed from the separate processes scenario
that CORBA – and any other inter-process (IPC) technology
– brings in. That recommended JNI as the middle layer.

JNI Considerations
	 Accessing external modules written in a language differ-
ent from the main routine isn’t new to most readers. Most
languages carry that feature along. We declare some known
convention for method prototyping and the two modules

can start talking at runtime. With JNI it’s
no different. Sun’s decision to use C as
the JNI base for prototyping was quite
adequate since most languages can inte-
grate with C code. JNI, though, is an API
and requires some level of expertise to
be programmed, while linking C code to
FORTRAN is a link time task and can be
done with only slight understanding of
your compiler directives. In JNI the glue
must be programmed.
	 JNI, as an API, offers flexibility but
requires some education to use though
it’s not too steep of a learning curve.
	 There are some products and tools that
can be used to help make the JNI experi-
ence simpler. One major effort is Noodle
Glue – also a Bridge pattern-oriented solution that works as a
bridger to the native class to automatically generate a Java wrap-
per. It’s sophisticated and robust, and was being open sourced
when last seen. The other is JNIWrapper, the apparent propri-
etary market leader so far, which follows more of an Adapter
pattern model in that it tries to adapt some native types so you
can access native resources through direct method calls.
	 Another painful experience is debugging in JNI.
I found ETNUS, a JNI IDE where you can debug Java code
and native code in the same environment, but it will cost you
some extra bucks. However, the context switching between
Visual Studio and Eclipse can be really painful. We explored
some hardcore turnarounds like using the “_asm int 3”
interruption call on Visual Studio so that we could force an
interruption call but that’s not elegant.

Conclusion
	 At this point I hope I’ve convinced you folks that JNI is
definitely the right choice for native code access from a Java
desktop application in the scenarios involving, say, graph-
ics and numerics in general. CORBA causes headaches, for
example, not being able to bind to the ORB because of a local
host Naming Service misconfiguration.
	 JNI overcomes limitations in Java solutions, especially
performance.
	 Another insight we’ve had is that accessing a native ap-
plication through some inter-process technology doesn’t
benefit much from knowing other designs. In JNI this is a
tighter conversation.
	 Legacy code should be well designed for access through JNI.
	 If your legacy code isn’t modularized, it will very hard to
access cleanly from Java or from other languages. The solu-
tion proposed in the JVipe scenario was only possible due to
the well-designed event-oriented native layer.
	 So I take the current number of solutions coming out as
motivation as industry jumps on JNI support. Let’s hope for
more JNI support from IDE vendors.

References
• TerraLib - www.terralib.org
• NoodleGlue - www.noodleglue.org
• JNIWrapper - www.jniwrapper.com
• ETNUS – www.etnus.com

 Figure 1 JNI touching points
Diagram 1 ­ JNI touching points

Presentation Layer

Control and Visualization
Layer

Data Layer

Access Layer

55July 2006JDJ.SYS-CON.com

Listing 1

class TdkCanvas {

	//...

	public void plotLine(TeLine2D& line) = 0;

	//...

}

class TdkJNICanvas : public TdkCanvas

{

public:

	// constructor expects the bridged TdkSwingCanvas instance

 TdkJNICanvas(JNIEnv *env, jobject *jThis);

	

	//...

	public void plotLine(TeLine2D& line);

	//...

private:

 JavaVM *jvm_; //Stores the Java virtual

machine

 jobject objCanvas_; 	//Stores the Java´s TdkSwingCanvas

instance

}

void TdkJNICanvas::plotLine(jobject& line)

{

 //Gets the current environment

 JNIEnv *env = getCurrentJAVAEnv(jvm_);

 jclass clsCanvas = env->GetObjectClass(objCanvas_);

 //Get the plotLine method ID

 jmethodID metCanvas = getMethodID(env, clsCanvas,

 “plotLine”, “(Ltdk/

core/geometry/TeLine2D;)V”);

 //Runs the method

 env->CallVoidMethod(objCanvas_, metCanvas, line);

}

//-------------

package tdk.graphics;

interface TdkCanvas {

	void plotLine(TeLine2D line);

}

public class TdkSwingCanvas implements TdkCanvas {

	//...

	private Graphics currGraphics_;

	//...

	public void plotLine(TeLine2D line) {

		//...

		

		// all geoms are Graphics2D Shape compositions

		currGraphics_.draw(line.getShape());

		//...

	

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher fails
to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of the
cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is
fully responsible for all financial liability and terms of the contract executed by the agents or agencies who are
acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to change by
the Publisher without notice. No conditions other than those set forth in this “General Conditions Document”
shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content of their
advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Pub-
lisher. This discretion includes the positioning of the advertisement, except for “preferred positions” described
in the rate table. Cancellations and changes to advertisements must be made in writing before the closing date.
“Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

	 Advertiser	 URL	 Phone	 Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

	 Quest	 www.quest.com/JavaCode		 2

	 Altova	 www.altova.com	 978-816-1600	 4

	 IBM	 ibm.com/takebackcontrol/flexible		 7	

	 Intersystems	 www.intersystems.com/Cache17P	 617-621-0600	 9

	 Fiorano	 www.fiorano.com/downloadsoa	 800-663-3621	 13

	 OPNET	 www.opnet.com/pinpoint	 240-497-3000	 19

	 Roaring Penguin	 www.roaringpenguin.com	 613-213-6599	 23

	 RogueWave Software	 www.roguewave.com/developer/downloads		 27

	 Real World Flex Seminar	 www.flexseminar.com	 201-802-3020	 31

	 Tibco	 www.tibco.com/mk/gi	 800-420-8450	 35

	LinuxWorld Conference & Expo	 www.LinuxWorldExpo.com		 37

	 iTVcon	 www.iTVcon.com	 201-802-3023	 45

	EclipseWorld Conference & Expo	 www.eclipseworld.net	 415-785-3419	 51

	 Northwoods	 www.nwoods.com	 800-434-9820	 53

	 Instantiations	 www.instantiations.com/rcpdeveloper	 800-808-3737	 57

	AJAXWorld Conference & Expo	 www.AjaxWorldExpo.com	 201-802-3020	 58,59

	 SoftwareFX	 www.softwarefx.com		 63

	 Parasoft	 www.parasoft.com/JDJmagazine	 888-305-0041x3501	 64

JDJ.SYS-CON.com56	 July 2006

STAND ON THE
SHOULDERS OF GIANTS

RCP Developer

RCP Developer™

SWT Designer™

RCP Developer™

 WindowTester™ RCP Packager™

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

y nature Web Services is a dis-
tributed technology. With dis-
tribution comes great flexibility
for architectural topologies.

Components can be strategically placed
in different physical locations to opti-
mize performance, maintenance and
business processes. In large organiza-
tions one physical location may handle
sales services, while another delivers
contract management. As organizations
build Service Oriented Architectures
that stitch together these physically
dispersed services, distributed develop-
ment becomes an interesting challenge
to overcome. Many collaborative tech-
nologies exist today to facilitate better
communications and information shar-
ing among workers, but it’s rare to find a
distributed development environment.
	 Enter Mindreef SOAPscope Server.
SOAPscope Server is a development
platform that provides a centralized
work environment designed specifi-
cally for SOAs enabled by Web Services.
Development teams collaborate in spe-
cialized virtual workspaces that manage
Web Services definitions, messages, re-
corded actions, simulations, and notes.

The Development Environment:
Creating Workspaces
	 Mindreef SOAPscope Server is
based on the concept of workspaces.
As mentioned, workspaces are central
repositories that contain the assets of
a given Web Services-enabled project.
There are three kinds of workspaces:
1.	Private – All assets in private work-

spaces are accessible only to the
logged-in user

2.	Team – Assets in team workspaces
are accessible to any logged-in user

3.	Community – Community work-
space assets are available to any
user in a read-only state, and
an editable state to those with
accounts on the server

	 As an example, assume that an or-
ganization has separate physical loca-
tions for sales, contract management,
and master data services (customer,
product, etc.). The support teams and
developers of these individual services
are also located in different physical
locations. As part of an effort to im-
prove ties with its trading partners, this
company is building an application so
buyers can submit price checks and
purchase orders using Web Services.
During development a workspace will
be created in the team area.
	 When establishing a workspace in
Mindreef SOAPscope Server, develop-
ers add WSDL definitions referred to as
service contracts. As shown in Figure
1, service contracts can be added to a
workspace via either a URL or a WSDL
file located on the file system. Service
contracts can also be added from the
developer’s other private workspaces,
and from all team and community
workspaces. For this example, the
ContractService and SalesService
WSDL files will be added.
	 With the service contracts loaded,
SOAPscope Server presents them to
developers in multiple views:
•	 Overview – Displays the details

of a specific service contract as a
tree structure. Each operation is
an expandable node on the tree in
which the operational details are
stored including actions and input
and output message constructs.

•	 Documentation – Lists all of the
components of the Web Service by
namespace.

•	 Files – Displays the XML files that
make up the Web Service definition
in a formatted view.

•	 Coverage – A general listing of usage
statistics for a given service. Metrics
captured here include total calls,
faults, call duration, request size,
and response size.

	 From these views, services can be
invoked, analyzed, or updated, and
multiple services can be compared to
identify differences in their definitions.
The developer can also analyze ser-
vices for best practices. The choices of
algorithms to run are Mindreef Basic
Diagnostics, WS-I Basic Profile 1.0, and
a combination of the WS-I Basic Profile
1.0 and SOAP Binding Profile 1.0. Users
have the option of creating their own
algorithms from a library of tests.

Testing & Verifying Services
	 Every time a developer invokes a
Web Service from a workspace, the
request and response messages are
captured and the event is stored as
an action. This serves as a powerful
mechanism for testing and debug-
ging. When issues with a service are
identified, the messages that produce
the issue can be stored and re-sent to
verify that the appropriate collective
actions have been taken.
	 Individual actions can also be strung
together to create scripts. This provides
for testing dependent services. Web
Service parameters can be configured
to extract their values from variables
allowing for the results of one service
to serve as the input to another. For the
example in this article, the ContractSer-
vice.GetContractPrice has been config-
ured to put its results in variables. The
values include contract number and
price. Subsequently, the SalesService.
SubmitPO operation has been config-
ured to extract the contract number
and price from the configured variables
completing the chain of operations.

Collaboration
	 All of the features of Mindreef
SOAPscope Server mentioned so far
are valuable and serve to assist with
developing and testing Web Services.
However, SOAPscope Server’s differen-

Product Review

Brian Barbash

Mindreef
SOAPscope Server

B
The rare distributed development environment

Brian R. Barbash is

the product review

editor for Web Ser-

vices Journal. He is a

senior consultant and

technical architect for

Envision Consulting,

a unit of IMS Health,

providing management

consulting and systems

integration that focuses

on contracting, pricing,

and account manage-

ment in the pharma-

ceutical industry.

JDJ.SYS-CON.com60	 July 2006

tiating functionality is in its ability for teams
to collaborate on Web Service development.
Features of the system that facilitate this
include:

•	 Workspace Notes – Notes in a work-
space provide a way to document
activities, changes, issues, and other
useful information to members. For
example, if an issue is identified with the
ContractService, the action that re-creates
the error and the specific inputs that are
associated with it may be documented
as a note. Members of the maintenance
team for the ContractService now have a
centralized documentation repository to
identify and resolve the issue, a location
into which the resolution may be entered,
and an action script to re-create and diag-
nose the issue at hand.

•	 RSS News Feeds – These feeds provide
information about the workspace and the
notes entered. RSS feeds always include
the first and last note entered in the
workspace. So teams that consume ser-
vices in a workspace may be notified by
RSS when changes, updates, or issues are
resolved in the workspace.

•	 SOAPscope Server Integration
– SOAPscope Server lets workspaces be
exported to a proprietary format called
a Mindreef Reproducible Package. These
packages can be transferred to any
SOAPscope Server server with all assets
intact. Packages can also be stored in
alternate systems, such as bug tracking
tools, for archiving and reference.

Simulation
	 Simulation in SOAPscope Server refers to
the practice of creating dummy messages
that serve as placeholders for Web Services.
This is particularly useful during the devel-
opment of composite applications and pro-
totyping where not all services are available.
During a simulation, SOAPscope Server acts
as a service endpoint, responding with the
appropriate message template based on the
contents of a request, or throwing a SOAP
fault when no matching response is found.
	 Using the ContractService a new opera-
tion has been defined called GetEligibility.
This operation will determine which con-
tracts a given customer can buy on, if any.
The service itself has yet to be developed, so
a simulation will be created for this specific
operation.
	 As shown in Figure 2, the simulation for
GetEligibility will be based on the value of
the attribute “name” in the incoming XML
payload. The response, shown at the bottom
of the screen, is a hard-coded XML string that
represents a generic eligibility value. Multiple

simulations can be created, each configured
to react to a specific payload, to accommodate
different business cases such as customers
being eligible for more than one contract. In-
voking the simulation is as simple as sending a
request from the service client to the endpoint
defined for the simulation.

Summary
	 Developing Web Services components in
a Services Oriented Architecture presents

unique challenges. Physical distribution of
resources adds to this complexity. Mind-
reef’s SOAPscope Server platform introduces
an interesting solution to this challenge by
providing a collaborative work environment
that goes beyond the traditional commu-
nication functions. The system can play
a valuable role in organizations building
out new services and supporting existing
applications. SOAPscope Server is definitely
worth a look.

 Figure 1 Adding a service contract

 Figure 2 Simulating a Response

61July 2006JDJ.SYS-CON.com

ast month I introduced to you the winners
of the 4th JCP Program Annual Awards.
But the story is only half told. To get the
full picture and understand how tight the

competition was, I’m inviting you to meet the
runners-up for the JCP Program awards – those
who came very close to winning the top honors
this year. They are among the top performers to
watch in the months and year ahead.
	 JBoss came close to winning in the JCP Mem-
ber of the Year category. The company’s active
participation in the community was noticed
by peers and juries. JBoss is involved in a wide
range of JSR efforts, including EJB 3.0, Java EE
5, and Web services and provides input and
feedback from both developer and user angles.
	 So did NTT DoCoMo, known in the com-
munity as an early adopter of Java technology
for handsets. Winner of the “Duke’s Choice
Award” at JavaOne 2005 for its Java technology-
based i-mode FeliCa service, NTT DoCoMo
has contributed its rich expertise in running
mobile Java services to many of the Java ME
Expert Groups in which it participates.
	 Sun Microsystems, the original creator of
the Java technology and specification lead
for a wide range of JSRs, was also a runner up
in this category. Working with other commu-
nity members, Sun recently finalized major
simplifications to the Java enterprise program-
ming model in JSR 244, Java EE 5, and is in the
process of revising the core Java specifications
in JSR 270, Java SE 6 (Mustang).
	 A strong contender for the winner’s place in
the Most Innovative Java ME JSR category was
JSR 248, the first of two specifications devel-
oped by the Mobile Service Architecture (MSA)
initiative, a group of 14 major mobile industry
players represented on the JSR Expert Group.
The spec leads are from Nokia Corporation
and Vodafone Group Services. The focus of the
JSR is to specify an unfragmented, backward-
compatible application development platform
that supports a set of key APIs to a wide variety
of features provided by the latest mass mar-
ket–oriented handsets and mobile networks
today and in the near future.
	 Led by Motorola and BenQ Corporation, JSR
253, Mobile Telephony API (MTA), stood out
too and vied for top honors. The specification
enables applications to incorporate tele-

phony features and controls directly into their
operation, avoiding the need to pass focus
to another application. One example of this
might be in a multi-player game that allows a
voice call to be placed to other players in the
game for strategy discussion (or taunting the
enemies). Another use is the ability to incorpo-
rate a feature such as calling out to a help desk
without exiting the application.
	 Another contender for the top innovation in
the Java ME category was JSR 281, IMS Services
API. This API enables application programmers
to easily create applications offering multime-
dia communication services in close integration
with IP Multimedia Subsystem (IMS) accord-
ing to applicable standards. In this way, IMS
domain, with all the advantages of merged
Internet and telco technologies, will be revealed
to the broad Java ME developer community
and will encourage faster adoption of the IMS
services provided by the wireless networks.
	 Currently the Spec Lead of JSR 257, Con-
tactless Communication API, and JSR 293,
Location API 2.0, Jaana Majakangas of Nokia
Corporation came again on the jury’s radar
screen as a great candidate in the Outstanding
Java ME Spec Lead category. Jaana has been a
member of the JCP from August 2003 and has
consistently participated in JSR development
including for JSRs 218, 219, 257, 271, and 293.
	 Volker Bauche’s work for JSR 228, Information
Module Profile - Next Generation (IMP-NG), and
co-spec leadership of JSR 281, IMS Services API,
with other colleagues from BenQ and Ericsson
brought him the nomination for Outstanding
Java ME Spec Lead. Bauche works in the R&D
department of BenQ Mobile as lead of a team
specializing in middleware projects.
	 On the JSR watch list o f developers around the
world, JSR 244, Java EE 5, was a natural candidate
for the top place in the Most Innovative Java SE/EE
JSR category. The JCP EC votes put it in the runner-
up race for all the right reasons. Java EE 5 is the most
significant release of the Java EE platform since the
first version, J2EE 1.2. It enhances the programming
model, making it much easier to write enterprise
applications. Java EE 5 makes extensive use of Java
language annotations to simplify the declarative
programming style of Java EE.
	 Another leading specification, JSR 220, EJB
3.0, was among the top nominations in the

Most Innovative Java SE/EE JSR. Its character-
istics did not escape the JCP EC jury as highly
innovative in a number of ways. It is the first
within the group of Java EE specifications that
takes advantage of the new features of annota-
tion metadata and parameterized types in
Java SE 5. In particular, it defines a strategy for
annotations usage subsequently adopted by
JSR 244 for the Java EE Platform.
	 Three great spec leads competed for the top award
in the Outstanding Java SE/EE Spec Lead group.
	 Jose R. Cronembold is a senior development
manager at Oracle Corporation. He designed and
implemented the Oracle JDeveloper’s IDE frame-
work. He has extensive experience in developing
IDEs. In addition to Oracle JDeveloper, he has
worked on two other IDEs: UIMX: a C++ IDE for
developing Motif-based applications, and Visual
Age for Basic: a Visual Basic compatible IDE.
Currently he is an observer of JSR 227, A Standard
Data Binding and Data Access Facility for J2EE.
	 Ed Burns has worked on a variety of Java
Platform, Standard Edition (Java SE) and Java
Platform, Enterprise Edition (Java EE) projects
in roles ranging from individual contributor
to team leader to architect. He co-authored a
book, JavaServer Faces: The Complete Refer-
ence, which will be available in August 2006.
	 Ed got involved with the JCP program when
he became co-Spec Lead of JSR 127, JavaServer
Faces, in October 2002, at the beginning of the
JSF development life cycle, and he continued
in that role with JSR 252, JavaServer Faces 1.2.
	 Stefan Hepper works for the IBM develop-
ment lab in Böblingen, Germany, and he is
the lead architect for the WebSphere Portal,
Workplace Client and Server programming
model, and public APIs. He co-led the Java
Portlet Specification V 1.0 (JSR 168) and is now
leading the V 2.0 (JSR 286). Stefan also started
the Pluto project at Apache that provides the
reference implementation of JSR 168.
	 Join me in congratulating the runners-up and
expect more exciting projects to come from them
in the months ahead. If you missed my column
last month you can check it out at http://java.sys-
con.com/read/232104.htm, and meet the winners
of the 4th JCP Program Annual Awards.

Onno Kluyt is the chairperson of the JCP Program Man-

agement Office, Sun Microsystems.

JSR Watch

Onno Kluyt

The 4th JCP Program
Annual Awards Runners-Up

L

JDJ.SYS-CON.com62	 July 2006

