
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

WHY IS AGILE DEVELOPMENT HARD? PAGE 6

PLUS...

Write Right
Java Faster

RETAILERS PLEASE DISPLAY
UNTIL SEPTEMBER 30, 2006

 JDJ.SYS-CON.COM VOL.11 ISSUE:7

No. 1 i-Technology Magazine in the World

A JNI-bridged Java
Desktop Application

Innovative Solutions for
Enterprise Developers

SEE PAGES 58-59
FOR DETAILS

SANTA CLARA CONVENTION CENTER
W W W . A J A X W O R L D E X P O . C O M

OCT 3-4
2 0 0 6

JDJad-Quest-0506.indd 1 4/20/06 10:51:53 AM

	 n	one	of	my	(several)	former	
professional	lives,	I	used	to	pub-
lish	books	about	the	future,	in-
cluding,	for	example,	the	world’s	

first	full-length	book	about	groupware.
	 That	was	back	in	1994	and	the	book	
was	called	Groupware	on	the	21st	Cen-
tury.	If	I’d	been	clairvoyant,	I	guess	I	
would	have	called	it	simply	The	Future	
Is	Google,	but	the	Web	hadn’t	yet	taken	
off,	let	alone	Google,	Inc.	–	mainly	be-
cause	Sergey	Brin	and	Larry	Page	were	
both	still	only	21	years	old.
	 Fast-forward	12	years	and	the	land-
scape	has	changed	so	much.	It	turns	out	
the	world	was	neither	flat,	nor	round,	
but	Google-shaped.	Because	much	of	
what	is	said	and	done	on	the	Web	is	cur-
rently	said	or	done	via	Google.
	 What	comes	after	Google?	Where	
will	the	Web,	the	Internet,	the	whole	
nexus	of	telecommunications,	i-Tech-
nology,	and	the	quest	for	a	better	world	
take	us?
	 My	strong	sense	is	as	follows:	if	Web	
2.0,	as	the	joke	goes,	is	about	how	we	
can	make	money	out	of	Web	1.0,	then	
Web	3.0	is	going	to	be	about	how	we	
can	extract	insight	out	of	Web	2.0.
	 Those	who	know	me	professionally	
–	and	a	few	have	had	to	weather	that	
particular	storm	for	well	over	a	quarter	
of	a	century	already	–	will	recognize	
my	(to	them)	familiar	refrain:	that	
“insight	capture”	is	the	key	to	the	21st	
century,	just	as	it	was	the	key	to	the	
19th,	or	the	20th…or	the	14th,	or	the	
16th,	for	that	matter.
	 Unless	we	can	first	capture	and	
thereafter	harvest	–	asynchronously,	as	
and	when	it	is	most	needed	and	most	
relevant	–	the	collective	wisdom	of	our	
time,	how	can	it	be	deemed	“wisdom”?	
None	of	us	has	time	any	longer	to	at-
tend	all	the	conferences	we’d	like	to,	or	
to	join	all	the	societies	or	support	all	the	
causes	that	appeal	to	us	for	attention,	
time,	and	money.	What	we	need	above	
all	is	to	be	able	to	act	co-intelligently.	
While	co-intelligence	is	what	we	need,	
our	actual	opportunities	for	meaning-
fully	interacting	with	our	peers	are	in	

some	respects	growing	in	inverse	pro-
portion	to	the	variety	of	ways	in	which	
we	can	execute	the	interaction.
	 We	send	e-mails	about	phone	calls,	
make	phone	calls	about	e-mails,	send	
IM	messages	about	videos,	write	blogs	
about	IM	messaging…and	send	videos	
about	there	being	too	many	ways	to	
communicate	–	because,	let’s	face	it,	do	
we	have	time	to	keep	up	with	each	other’s	
communication	stream?	On	a	good	day,	
barely;	on	a	regular	day,	heck	no!
	 Welcome	to	the	World	Beyond	Google.	
In	this	post-Google	world	that	I	am	
positing,	the	responsibility	for	extract-
ing	the	good	from	the	rich	new	seams	
of	inter-communication	would	pass	in	
part	from	the	individual	to	the	collec-
tive	–	not	quite	the	“Wisdom	of	Crowds”	
idea,	which	is	more	like	a	“broadband”	
version	of	this	vision,	but	certainly	the	
wisdom	of	many,	on	the	basis	of	“none	
of	us	is	a	smart	as	all	of	us.”
	 How	does	it	work,	co-intelligence?	
It’s	almost	easier	to	say	how	it	doesn’t	
work.	Co-intelligence	begins	when	
trying	to	outsmart	the	other	guy	ends.	
When	we	are	proud	to	bring	our	
pebble	to	the	building	site	and	help	
build	the	tower	of	perspective;	we	don’t	
need	to	insist	on	being	the	chief	archi-
tect	if	all	that	the	titular	folly-swaddle	
achieves	is	that	what	gets	built	instead	
is	not	a	tower	but	a	small	woodshed.
	 Small	is	powerful,	less	is	more.	We	
need	fewer	ways	to	communicate,	not	
more,	and	better	ways	to	distill	what’s	
being	communicated.	There	will	most	
certainly	be	Life	Beyond	Google,	but	
it	will	be	insightful	only	if	we	plan	for	
insight	right	now,	in	every	piece	of	
software	we	develop	and	every	single	
communication	and/or	networking	
application	that	we	build.
	 Social	networking	without	some	
kind	of	insight	functionality	is	like	
mashing	up	all	the	world’s	transport	
systems	–	the	road	network,	the	rail-
roads,	the	navigable	rivers,	the	flight	
paths	–	and	then	hoping	it	will	work	
without	the	simultaneous	invention	
and	development	of	maps.			

From the Group publisher

Is There Life
Beyond Google?

 Editorial Board

 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON at

conferences and trade

shows, speaking to

technology audiences

both in

North America and

overseas. jeremy@
sys-con.com

Jeremy Geelan
Group Publisher

I

3July 2006JDJ.SYS-CON.com

Altova® StyleVision® 2006 – The ultimate e-forms, DB report and stylesheet designer.

Transform your
 appearance

Outfi t yourself with StyleVision® 2006,
and fashion multiple outputs from a

single stylesheet design.

New in Version 2006:
l Vastly enhanced user interface and usability features

l Support for multiple data sources in one output design
l Cascading stylesheets (CSS) for use in transforming

 XML and databases to HTML
l JavaScript editing and embedding in HTML designs

Altova StyleVision 2006, the ultimate e-forms, DB
report, and stylesheet designer, lets you transform

XML and database content into eye-catching
HTML, PDF, and Word/RTF output all from

the same design. Also use it to create
intuitive electronic forms for Authentic®

2006, Altova’s powerful, FREE XML
and database content editor that

enables business personnel to view
and edit data without being exposed
to the underlying technology.
Get more out of your designs!

Download StyleVision® 2006
and Authentic® 2006 today:
www.altova.com

StyleAuth_JDJ.indd 1 5/24/2006 2:45:41 PM

JuLY 2006 VOLUME:11 ISSUE:7

contents

JDJ (ISSN#1087-6944) is published monthly (12 times
a year) for $69.99 by SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645. Periodicals
postage rates are paid at Montvale, NJ 07645 and

additional mailing offices. Postmaster: Send address
changes to: JDJ, SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645.

From the Group publisher

Is There Life Beyond Google?
by Jeremy Geelan

. .3
Viewpoint

Why Is Agile Development Hard?
by Jon Kern

. .6
eclipse update
Innovative Solutions for
Enterprise Developers
Interview with Mike Milinkovich,

executive director of the Eclipse Foundation

. .8
open source

A Look at the Eclipse
Callisto Release
Providing a more transparent and predictable

development cycle

by Chris Aniszcyk & Gunnar Wagenknecht

. . 	 .10

security

Web Services Security in Java EE
The present and future

by Andrei Iltchenko

. .24
JsF
By Invitation Only!
Effective page authorization in JavaServer Faces

by Frank Nimphius & Duncan Mills

. .32
pluG-ins

Configuring the
WebLogic-Eclipse Plug-in
Designed to run the WebLogic Server

from the Eclipse IDE

by Deepak Vohra and Ajay Vohra

. .38
deVelopment

Java Techie to Manager
You’ve got the job now what do you do?

by Benjamin Garbers

. .40

desktop JaVa Viewpoint

Who does Business Logic?
by Joe Winchester

. .46
open source

Eclipse
A general purpose platform

. .48
product reView

Mindreef SOAPscope Server
The rare distributed development environment

by Brian Barbash

. .60

Jsr watch

The 4th JCP Program Annual
Awards Runners-Up
by Onno Kluyt

. .62

14by Anil Hemrajani

42
Write Right
Java Faster

by Richard Cariens & John Evans

JDJ Cover Story Features

A JNI - bridged Java
Desktop Application

by Mário de Sá Vera

54

Eclipse
&Hibernate

withSpring,

5July 2006JDJ.SYS-CON.com

bet	you	thought	agile	development	was	
supposed	to	be	easier	than	a	traditional,	
prescriptive	process!	That	I	would	wax	evan-
gelical	that	agile	development	is	the	answer	

to	everything,	and	it	simplifies	your	life.	Yeah,	
just	like	UML	and	model-driven	architecture	and	
XML	and	SOA	and	Web	services	are	silver	bullets.	
Uh-huh,	r-i-g-h-t.
	 If	you	aren’t	familiar	with	agile	development,	
you	can	check	out	our	manifesto	here:	http://
www.agilemanifesto.org/.	You	can	also	learn	
more	here:	http://en.wikipedia.org/wiki/Ag-
ile_software_development.	The	difficulty	with	
“agile	development”	is	that	it	is	“in	the	eye	of	the	
beholder.”	That	is,	even	a	highly	regulated,	con-
strained	application	can	be	conducted	in	an	agile	
manner.	That	manner	will	be	radically	different	
from	the	way	a	five-member	team	might	ap-
proach	building	a	small	desktop	software	product	
that	they	want	to	sell.	Both	projects	can	be	agile,	
and	therein	lies	some	of	the	issues	that	make	agile	
seem	“hard.”
	 Why,	then,	is	agile	development	hard?
	 It	might	not	be	so	much	that	agile	develop-
ment	is	hard,	per	se,	depending	on	your	perspec-
tive.	The	reason	I	give	for	agile	development	be-
ing	more	of	a	challenge	for	many	teams	is	simple:

YOU HAVE TO USE YOUR BRAIN!

	 No,	I	don’t	mean	to	infer	that	you	don’t	
normally	use	your	brain.	However,	in	a	highly	
prescriptive	process,	it	is	easy	to	fall	into	a	trap	
of	doing	an	activity	because…	well,	just	because!	
Typical	reasons	are	that	a	specific	set	of	steps	are	
mandated	by	a	process,	possibly	making	sense	in	
some	projects,	not	in	others.	But	often,	the	pro-
cess	grows	old,	people	no	longer	remember	why	
they	are	doing	a	specific	task,	but	do	it	anyway.	
Folks	get	comfortable	building	some	document	
without	ever	asking	the	recipient	if	it	is	enough,	
too	much,	useless,	perfect.

– Don’t Mistake Activity for Progress

	 Developers	often	jump	into	the	fray	by	“cherry-
picking”	specific	fun	stories	and	sometimes	
missing	the	big	picture.	For	an	app	that	needs	to	
message	another	app	and	then	do	some	crunch-
ing,	I	have	seen	developers	working	on	everything	
but	the	core	system	development	needs:	the	
messaging	or	shelling	out	of	one	app	to	speak	to	
another	app.	When	I	asked	if	they	got	the	basics	
working	yet	and	are	now	discussing	the	pretty	
frills,	they	looked	around,	kind	of	sheepishly.	“No,	

we	don’t	have	the	parent	app	able	to	message	our	
part	yet.”	If	you	use	your	brain	and	step	back	a	
bit,	you	can	see	that	nothing	else	matters.	
	 Despite	making	progress	on	“stories”	they	
actually	had	no	meaningful	progress.	Remember,	
if	you	can’t	see	it	working,	it	doesn’t	exist!

– Show Me Working Features

	 Yeah,	yeah,	yeah,	I	know,	someone	didn’t	
prioritize	the	stories	properly.	But,	you	certainly	
cannot	expect	a	“customer”	to	figure	out	that	
some	weird	technical	messaging	thingy	had	to	
be	in	place	first.	The	customers	better	only	talk	
about	the	business	and	features	that	are	(gener-
ally)	devoid	of	technology	words.
	 Development	teams	have	to	think	more	broad-
ly	than	just	coding.	If	a	team	understands	that	the	
client	needs	to	know	about	some	aspects	of	the	
technology	that	have	to	be	implemented	before	
anything	else	matters,	this	should	be	brought	to	
their	attention.
	 Development	teams	also	need	to	help	with	the	
project	management	aspects.	Yes,	that’s	right.	You	
need	to	learn	how	to	say	“No!”	–	in	a	gentle	man-
ner,	of	course.	
	 “So,	can	we	add	some	more	features	to	this	
iteration?”
	 “Uh,	since	we	are	three	days	to	iteration	
‘pencil’s	down,’	let	me	think.	NO!	It	has	to	wait	
until	the	next	iteration.”
	 After	all,	if	you	know	in	your	gut	that	there	is	no	
way	for	a	disruptive	request	to	be	accomplished,	
why	bother	trying?	You	should	always	maintain	
your	iteration	delivery	schedule,	slipping	features	
instead	of	dates.	You	should	always	maintain	your	
good	habits.	Someone	has	to	be	the	adult	;=)

– Learn to Say “No”

	 In	agile	development,	you	(and	everyone	else)	
are	charged	with	the	rather	difficult	responsibility	
of	always	challenging	yourself	to	ensure	you	are	
doing	the	smartest	thing	possible	that	will	bring	
about	the	best	solution	for	the	current	project	
(and	within	its	context).
	 You	need	to	set	up	your	agile	team	for	“run-
ning	fast”	through	each	iteration’s	features.	To	
start	with,	I	like	to	model	the	problem	domain	to	
enough	of	a	level	of	understanding	from	which:
•	 Requirements/features	can	be	written	using	a	

consistent	language
•	 Enough	of	an	object	model	exists	to	anchor	

the	coding

Viewpoint

Why Is Agile
Development Hard?

President and CEO:

 Fuat Kircaali fuat@sys-con.com

Group Publisher:

 Jeremy Geelan jeremy@sys-con.com

Advertising

Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

Advertising Sales Director:

 Robyn Forma robyn@sys-con.com

Advertising Sales Manager:

 Megan Mussa megan@sys-con.com

Associate Sales Manager:

Kerry Mealia kerry@sys-con.com

Lauren Orsi lauren@sys-con.com

Editorial

Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Louis F. Cuffari louis@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Tami Lima tami@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Wayne Uffleman wayne@sys-con.com

Accounting

Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Accounts Receivable:

 Gail Naples gailn@sys-con.com

 Customer Relations

Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

JDJ Store Manager:

 Brunilda Staropoli bruni@sys-con.com

Jon Kern

I

– continued on page 10

JDJ.SYS-CON.com6 July 2006

JDJ: What’s the state of the RCP – are “rich clients”
Eclipse’s focal point for the future of software
development?
Milinkovich: Eclipse	RCP	is	a	very	important	strategy	
and	future	for	us.	We	are	seeing	a	lot	of	uptake,	
in	particular	ISVs,	from	organizations	adopting	
RCP	as	the	platform	for	building	their	next-gen-
eration	products.	That	being	said,	Eclipse	as	a	
community	is	focused	on	a	number	of	different	
areas	including	providing	innovative	solutions	for	
enterprise	Java	developers.	In	addition,	we	have	a	
leadership	position	in	providing	the	platform	for	
embedded	tools	development	and	our	SOA	and	
ALM	initiatives	are	coming	on	strong.	

JDJ: How does portability between platforms trans-
late into value for enterprises, assuming that this
is what will drive RCP adoption.
Milinkovich: The	freedom	of	choice	is	the	value	RCP	is	
providing	enterprises	and	ISVs.	If	you	are	building	
for	the	.NET	platform,	you	are	pretty	much	com-
mitted	to	deploying	on	Windows.	Eclipse	RCP	al-
lows	you	to	choose	now	or	in	the	future	the	ability	
deploy	on	Windows,	Mac,	Linux,	Solaris,	or	HP-UX,	
and	we	are	working	on	embedded	platforms	like	
the	Nokia	Series	60.	This	is	pretty	compelling,	
especially	if	you	are	an	ISV	and	want	to	have	a	
solution	for	potential	Mac	and	Linux	customers.

JDJ: Is SOA still a part of the Eclipse Foundation’s
vision of the future?
Milinkovich: Absolutely.	We	have	a	top-level	project	
called	the	SOA	Tools	Platform	that	is	building	the	
frameworks	and	exemplary	tools	that	enable	the	
design,	configuration,	assembly,	deployment,	
monitoring,	and	management	of	software	designed	
around	a	service-oriented	architecture	(SOA).	
The	interesting	thing	about	this	project	is	that	the	
companies	involved	in	the	SCA	are	also	involved	in	
the	Eclipse	SOA	Tools	project,	so	there	is	going	to	be	
very	good	symmetry	between	these	two	initiatives.

JDJ: How about Ajax? Where does that fit in? The
Eclipse Foundation joined OpenAjax right from
the get-go, for example.
Milinkovich: Ajax	is	a	natural	evolution	for	Eclipse.	
Lots	of	people	equate	Eclipse	with	being	Java	
but	Eclipse	is	a	lot	more	than	just	Java.	Eclipse	
is	really	about	being	a	platform	for	building	and	
integrating	tools.	In	fact	,we	have	counted	over	
20	different	language	IDEs	built	on	Eclipse.

	 So	developing	an	Ajax	tool	chain	and	frame-
works	is	pretty	natural	for	us.	Specifically,	we	have	
an	Ajax	Toolkit	Framework	(ATF)	project	and	an	
Ajax	framework	project	called	Rich	Ajax	Platform	
(RAP).	The	other	interesting	thing	is	that	if	you	
look	at	the	wider	Ajax	and	Rich	Internet	Appli-
cation	(RIA)	community,	everyone	seems	to	be	
building	their	tools	on	Eclipse	–	Adobe,	Nexaweb,	
and	Laszlo	to	name	just	a	few.

JDJ: Sun’s been rumbling on about possibly join-
ing Eclipse at long last if only you’d ditch the
confrontational name. (1) Would you ever change
the name and (2) would Sun’s joining mean the
end of NetBeans?
Milinkovich: I	really	believe	there	are	two	platforms	
now:	Eclipse	and	Visual	Studio	.NET.	I	have	said	
this	before;	we	would	love	to	have	Sun	join	Eclipse.	
There	is	lots	of	room	for	NetBeans	and	I	can	easily	
see	it	thriving	on	the	Eclipse	platform.	Changing	
the	name	is	really	not	an	option	any	longer.

JDJ: What do you think are the top three open
source issues right now?
Milinkovich: I	used	to	be	a	product	manager	in	a	
former	life,	and	to	me	what	the	open	source	
community	as	a	whole	needs	to	think	of	is	how	
to	provide	enterprises	with	the	“whole	prod-
uct.”	What	I	mean	by	that	is	just	providing	the	
executable	bits	is	not	enough.	Enterprises	need	
services,	technical	support,	training,	knowledge	
transfer,	etc.,	as	well	as	the	source	and	binary	
code.	In	other	words,	the	open	source	communi-
ty	in	its	entirety	will	need	to	provide	all	of	these	
various	pieces	to	enterprises	before	becoming	
truly	mainstream.
	 Along	with	this,	enterprises	want	to	source	
their	technology	from	reliable	and	predictable	
providers.	Open	source	communities	need	to	
demonstrate	that	they	can	be	transparent	and	
predictable	in	their	technology	roadmaps.	This	
is	one	area	that	we	at	Eclipse	spend	a	great	deal	
of	time	and	effort	working	on.
	 The	third	area	is	that	the	open	source	com-
munity	needs	to	figure	out	how	to	inspire	enter-
prises	to	contribute	back	to	the	community.	Not	
out	of	altruism,	but	because	the	corporations	are	
shown	that	there	are	compelling	business	rea-
sons	to	do	so.	To	me,	that	seems	like	one	of	the	
obvious	paths	for	both	growth	and	collaboration	
by	the	open	source	community.			

eclipse update

Innovative Solutions for
Enterprise Developers

Interview with Mike Milinkovich, executive
director of the Eclipse Foundation

•	 Enough	complexity	has	been	uncov-
ered	to	make	the	cost/time	estimate	
defensible

	 In	addition,	you	need	to	understand	the	
architectural	approach	(not	to	mention	
coding	guidelines).	You	can	slowly	arrive	
at	the	ultimate	architecture	and	call	it	
refactoring.	But	at	what	cost?	I	like	to	get	
the	bulk	of	the	architecture	design/build-
ing	work	out	of	the	way	before	starting	the	
first	iteration.	Of	course,	for	some	apps,	
you	may	already	have	the	architecture	
style	predetermined.	
	 I	like	to	ensure	the	team	can	hit	the	
ground	running	with	a	list	of	features	in	
hand,	architecture,	coding	guidelines,	
automated	build	scripts,	and	a	domain	
model	from	which	to	hang	code.
	 Sure	you	can	discover	all	of	this	piece-
meal	as	you	go	along,	but	that	is	usually	
slower	and	less	efficient	than	doing	some	
work	up-front	to	lay	the	groundwork.	No,	I	
am	not	talking	about	“Big	Stuff	Up	Front”	
(BDUF/BRUF)	type	of	an	approach.	I	
am	talking	about	using	your	brain.	Do	
enough	up-front	work	to	enable	running	
fast	(even	with	scissors).	Maybe:	Just	Enuf	
Design	Up-front	(JEDI	–	if	I	substitute	
“Initially”	<g>).

– You Must Lay the Proper
Groundwork to Be Agile

	
By	a	few	iterations	in,	if	you	are	not	rip-
ping	through	the	feature	list/user	stories	
almost	faster	than	they	can	be	compiled,	
you	are	not	yet	performing	at	a	truly	agile	
level.	If	it	is	“disruptive”	that	a	customer	
changes	the	stories	scheduled	for	the	next	
iteration	because	of	changing	priorities,	
you	are	not	yet	performing	at	a	truly	agile	
level.	If	you	and	your	team	are	not	con-
stantly	using	your	brains,	you	are	not	yet	
in	the	agile	state	of	mind.
 – Agile Is a State of Mind!

	 Post	any	comments	on	my	blog:	http://
www.compuware.com/blogs/jkern/		

Jon Kern is a software engineering evangelist,

Agile Manifesto co-author, speaker, and author. His

experience is wide-ranging across varied problem

domains and technology platforms. From jet engine

R&D (he’s an aerospace engineer, after all) to real-

time flight simulator design and development, from

TogetherSoft’s and OptimalJ’s commercially success-

ful modeling tools to building IBM’s

Manufacturing Execution System software –

Jon has seen and done a lot in his 20 years.

jon.kern@compuware.com

– continued from page 6

8 July 2006 JDJ.SYS-CON.com

Massive scalability on minimal hardware

Caché is the first multidimensional database for transaction processing and real-time
analytics. Its post-relational technology combines robust objects and robust SQL, thus
eliminating object-relational mapping. It delivers massive scalability on minimal hardware,
requires little administration, and incorporates a rapid application development environment.

These innovations mean faster time-to-market, lower cost of operations, and higher
application performance. We back these claims with this money-back guarantee: Buy Caché
for new application development, and for up to one year you can return the license for a full
refund if you are unhappy for any reason.* Caché is available for Unix, Linux, Windows, Mac
OS X, and OpenVMS – and it's deployed on more than 100,000 systems ranging from two to
over 50,000 users. We are InterSystems, a global software company with a track record of
innovation for more than 25 years.

The Objects Of Your Desire.

Rapid development with robust objects Lightning speed with a multidimensional engine

Easy database administration

Try an innovative database for free: Download a fully functional, non-expiring copy of Caché, or request it on CD, at www.InterSystems.com/Cache17P
* Read about our money-back guarantee at the web page shown above.

© 2006 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 6-06 CacheInno17JDJ

CacheInno17 JDJ.qxp 6/15/06 2:22 PM Page 1

allisto	is	the	simultaneous	
release	of	10	major	Eclipse	
projects	at	the	same	time.	An	
important	thing	to	note	about	

Callisto	is	that	even	though	it’s	the	
simultaneous	release	of	10	projects,	
it	doesn’t	mean	these	projects	are	
unified.	Each	one	remains	a	separate	
Open	Source	project	operating	with	
its	own	project	leadership,	its	own	
committers,	and	its	own	development	
plan.	In	the	end,	Callisto	is	about	
improving	the	productivity	of	develop-
ers	working	on	top	of	Eclipse	projects	
by	providing	a	more	transparent	and	
predictable	development	cycle.

A Quick Tour of Callisto’s Projects
	 In	this	article,	we	‘ll	go	through	each	
of	the	Callisto	components.	We’ll	give	
a	brief	overview	of	each	and	quote	
an	Eclipse	committer	about	what’s	
exciting	about	his	component	in	the	
Callisto	release.	Then	we’ll	discuss	
some	of	the	challenges	that	faced	Cal-
listo	and	conclude	with	the	advantages	
gained	by	adopting	Callisto.	As	you	
soak	in	what	the	committers	have	to	
say,	remember	that	they	are	from	the	
various	corporations	working	together	
to	make	Callisto	a	reality.

Platform
	 The	Eclipse	Platform	component	
(http://www.eclipse.org/platform)	is	
the	heart	of	Eclipse	and	has	three	main	
pieces:	

•	 Java Development Tools (JDT)
–	http://www.eclipse.org/jdt	-	When	
most	people	think	of	Eclipse,	this	is	
the	first	component	they	think	of.	
Eclipse	provides	a	world-class	Java	
development	environment.	

•	 User Interface/Core Tooling	–	This	
piece	encompasses	many	smaller	

components	in	the	Platform.	It’s	
responsible	for	all	the	visuals	you	
see	in	Eclipse	and	features	like	team	
integration	and	Ant	support.

•	 Plug-in Development Environment
(PDE)	–	http://www.eclipse.org/pde	
-	Have	you	ever	used	a	wizard	in	
Eclipse	to	create	an	Eclipse	plug-in?	
If	you	have,	you	used	the	PDE.	It’s	
responsible	for	all	the	tooling	in	
plug-in	development.

	 Since	it’s	hard	to	track	down	all	the	
committers	for	each	of	the	small	Plat-
form	projects,	we’ll	focus	on	what	PDE	
has	to	offer	Callisto:

 “For the Callisto release, PDE
provides comprehensive OSGi tooling,
which would make it an ideal develop-
ment environment for component
programming, not just Eclipse plug-in
development. Other noteworthy
features include quick fixes in plug-in
manifest files, NLS tooling, and tighter
integration with JDT via participation
in search and refactoring.”

- Wassim Melhem,

PDE lead, IBM

C/C++ Development Tools (CDT)
http://www.eclipse.org/cdt
	 Did	you	know	Eclipse	isn’t	just	for	
Java	development?	The	CDT	project	
aims	to	bring	a	fully	functional	C	and	
C++	development	environment	to	the	
Eclipse	Platform.	One	should	note	that	
CDT	can	scale.	A	famous	CDT	demo	
is	to	import	the	Mozilla	code	base	and	
use	CDT	to	develop	it.

“The CDT brings Callisto a develop-
ment environment for writing C and
C++ programs. The JDT sets a high bar
as far as Eclipse IDEs go and we are
constantly working in catch-up mode.

For Callisto, the CDT provides an editor
with all your regular text editor features
such as language-specific keyword
highlighting and content assist. It also
provides an index of the user’s code to
provide search and code navigation
features. There’s also a framework for
integrating build tools and debuggers
to complete the edit-build-debug cycle.
In this release, we’ve focused on a faster,
more scalable indexing framework
as well as a flexible build system that
allows for per-resource builds as well
as a new experimental internal builder
that eliminates the need for MAKE
files. We also have the beginnings of a
framework for supporting additional
compiled languages such as Fortran by
the Photran project and hopefully more
such as C# and Ada in the future.

- Doug Schaefer,

CDT lead, QNX Software Systems

Business Intelligence &
Reporting Tools (BIRT
 http://www.eclipse.org/birt
	 The	BIRT	project	strives	to	bring	a	
Eclipse-based	reporting	system	that	
integrates	with	your	application	to	
produce	compelling	reports	for	both	
Web	and	PDF.	BIRT	provides	core	
reporting	features	such	as	a	graphi-
cal	report	designer,	data	access,	and	
scripting	support.	BIRT	reminds	me	of	
Crystal	Reports	or	JasperReports,	but	
tightly	integrated	with	Eclipse.

“With the Callisto release, BIRT ex-
pands on the themes of scaling, broader
appeal, and simplicity. Some of the
new features include Re-portlet sup-
port, which allows elements of a BIRT
report to be rendered as partial HTML
pages for better integration into dash
boarding-type applications, joined
datasets for combining disperse data

open source

by Chris Aniszczyk
& Gunnar Wagenknecht

A Look at the Eclipse
Callisto Release

C

Providing a more transparent and predictable development cycle

JDJ.SYS-CON.com10 July 2006

sources into a single table, improved
DTP integration, parameterized XML
data sources, the ability to template
an existing report design, and several
chart enhancements. BIRT 2.1 will also
provide better tooling to promote devel-
oped reports and ancillary files between
environments.

- Jason Weatherby, BIRT evangelist,

 Actuate Corporation

Data Tools Platform (DTP)
http://www.eclipse.org/dtp
	 DTP	project	includes	extensible	
frameworks	and	exemplary	tools	
around	data-centric	technologies.	DTP	
provides	data	management	frame-
works	and	tools	not	biased	toward	
any	vendor.	If	you	plan	to	work	with	
databases	and	use	Eclipse,	this	should	
be	your	first	stop	for	database	tooling.

“The Eclipse Data Tools Platform (DTP)
brings a number of key data-centric
frameworks and tools to the Callisto
feature set. Using these DTP frame-
works and the examples provided for
Apache Derby, the extender community
can quickly achieve a high-functional-
ity baseline working with heteroge-
neous data sources. Once this baseline
is attained, specialized offerings for
data-centric applications can then be
created in the familiar Eclipse Plug-in
Development Environment (PDE),
allowing developers to leverage existing
skills for the data domain.”

- John Graham, DTP lead, Sybase Corporation

Eclipse Modeling Framework (EMF)
http://www.eclipse.org/emf
	 EMF	is	a	modeling	framework	and	
code	generation	tool	for	building	tools	
and	other	applications	based	on	a	
structured	model.	To	put	it	simply,	EMF	
lets	you	build	models	quickly	by	taking	
advantage	of	EMF	facilities.	For	example,	
one	feature	EMF	provides	is	support	for	
persisting	models	to	XML	(there	are	op-
tions	to	persist	models	to	databases	too).

“The Eclipse Modeling Framework pro-
vides powerful generative and runtime
capabilities for applications based on
structured data models. From a simple
class diagram or XML Schema, you can
generate a complete Java implementa-
tion of the model, along with an editor
for it, and take advantage of EMF’s
facilities for persistence, notification,
validation, and change recording in
your application. Callisto includes EMF
2.2, which introduces many exciting

new features: a simplified XMLProcessor
API for XML persistence; cross-resource
containment support; new code genera-
tion patterns, allowing, for instance, for
all signs of EMF to be suppressed from
generated interfaces, or for no inter-
faces to be generated at all; encryption
support in resources; improved XML
Schema generation and round-tripping;
an extensible model exporter tool; an
improved, extensible code generator;
and various performance improvements
and usability enhancements.

- David Steinberg, EMF committer, IBM

Graphical Editing Framework (GEF)
http://www.eclipse.org/gef
	 GEF	serves	as	the	base	for	graphi-
cal	applications	in	Eclipse.	It	includes	
Draw2D	(similar	to	Java2D),	which	is	
a	lightweight	graphical	toolkit	built	on	
SWT.	GEF	itself	is	a	framework	that	ex-
tends	the	Model-View-Controller	para-
digm	to	graphical	editors.	GEF	brings	
your	own	model	to	the	framework	and	
provides	facilities	that	take	advantage	
of	Draw2D	to	paint	your	figures.

“[For the Callisto release] GEF 3.2 is
essentially a maintenance release in
terms of features and bug fixes. Some
minor features that were integrated
were for supporting animated layout
and general fixes to direct graph layout
algorithm...”

- Steven Shaw, GEF/GMF committer, IBM

Graphical Modeling Framework (GMF)
http://www.eclipse.org/gmf
	 GMF	is	a	new	Eclipse	project	that	
aims	to	bridge	EMF	and	GEF	to	allow	
for	the	generation	of	graphical	editors.

“GMF brings Callisto a more efficient
means for Eclipse developers to create
graphical editors based on EMF and
GEF. Based on model-driven develop-
ment techniques, GMF leverages a se-
ries of models to generate editors target-
ing the feature-rich GMF diagramming
runtime, which can also be used in the
absence of the generative framework
for the creation of high-quality editors.
Follow the GMF Tutorial cheat sheet
and online tutorial to get started.”

- Richard Gronback, GMF lead, Borland

Test & Performance Tools
Platform (TPTP)
http://www.eclipse.org/tptp
	 TPTP	provides	an	open	platform	
supplying	powerful	frameworks	and	
services	that	allow	software	developers	

to	build	unique	test	and	performance	
tools,	both	Open	Source	and	commer-
cial,	that	can	be	easily	integrated	with	
the	platform	and	with	other	tools.	The	
platform	supports	a	broad	spectrum	
of	computing	systems	including	em-
bedded,	standalone,	enterprise,	and	
high-performance	and	will	continue	
to	expand	support	to	encompass	the	
widest	possible	range	of	systems.	

“TPTP provides a rich set of test, profil-
ing, and monitoring tools. However its
true value can only be realized by being
part of a core typical user use case. By
integrating with the WTP project and
providing a ‘profile on server’ action
TPTP becomes an easy link to collecting
and analyzing your Web application
performance characteristics. By further
providing the ability to function and
load test based on http requests TPTP
helps the developer prove the quality of
the Web application. Finally by provid-
ing customized extended reporting of
the rich data TPTP collects with the use
of BIRT the user can get the test and
performance data they want and need
to best manage their own project.

- Harm Sluiman, TPTP committer, IBM

WebTools Platform (WTP)
http://www.eclipse.org/webtools
	 The	WTP	Project	extends	the	Eclipse	
Platform	with	tools	for	developing	
J2EE	Web	applications.	The	WTP	
project	includes	source	editors	for	
HTML,	JavaScript,	CSS,	JSP,	SQL,	XML,	
DTD,	XSD,	and	WSDL;	graphical	edi-
tors	for	XSD	and	WSDL;	J2EE	project	
natures,	builders,	and	models,	and	a	
J2EE	navigator;	a	Web	Service	wizard	
and	explorer,	and	WS-I	Test	Tools;	and	
database	access	and	query	tools	and	
models.

“WTP’s 1.5 release in the Callisto train
will include several new features and a
number of stability and performance
enhancements. Users of WTP Web
Services will appreciate the upgrade to
Axis 1.3 and streamlined Web Service
and client wizards. XML Schema and
WSDL graphical views have also been
revamped to make them easier to
navigate and read. WTP tackled some
major infrastructure work in the Cal-
listo release, moving to the platform’s
common navigator and undo stacks.
The tabbed property support is also
transitioning from WTP-only to the
platform level in this release. Finally,

11July 2006JDJ.SYS-CON.com

the Dali and JSF projects are planning
to do a technology preview around the
Callisto timeframe and will provide
some exciting ‘first looks’ at Java EE 5
tooling support that will preview sup-
port in WTP 2.0.”

 - Tim Wagner, WTP PMC lead, BEA

Visual Editor Project (VE)
http://www.eclipse.org/ve
	 Ever	wondered	if	there	was	a	way	to	
create	user	interfaces	visually,	using	
the	simple	semantics	of	drag-and-
drop?	The	Eclipse	project	provides	VE,	
which	is	a	open	development	platform	
for	supplying	frameworks	to	create	
GUI	builders.	VE	has	two	exemplary	
implementations	of	Swing/JFC	and	
SWT/RCP.	

“The Visual Editor project (http://www.
eclipse.org/vep/) adds the ability to
visually develop SWT and Swing user
interfaces in Callisto. The main focus of
this release was to add initial support
for creating Rich Client Platform (RCP)
components with the VE. Towards that
goal we’ve added: the ability to develop
Views and Editors visually, support for
the Forms UI toolkit, and the ability to
work with JFace viewers. Other notable
new features in this release include sig-
nificantly enhanced tooling for SWT’s
GridLayout and support for VE on the
Mac OS X platform.”

- Jeff Myers, VE committer, IBM

Callisto’s Challenges
	 There	are	two	main	challenges	
with	Callisto.	The	first	one	and	for	
many	people	the	most	obvious	one	is	
developing	Callisto.	Aligning	10	large	
projects	for	simultaneous	release	is	
very	challenging.	But	once	you	actu-

ally	get	the	release,	you	have	to	deliver	
it	and	that’s	a	challenge	on	its	own.
	 The	method	of	choice	for	deliver-
ing	Callisto	is	the	Eclipse	built-in	
update	mechanism.	So	you	only	
have	to	download	the	Eclipse	
Platform	binary	for	your	system	
and	then	you	start	Eclipse,	use	the	
Update	Manager	to	visit	the	Callisto	
Update	Site,	and	select	the	Callisto	
features	you’d	like	to	have	installed	
in	your	environment.	The	Eclipse	
Update	Manager	will	do	the	rest	for	
you.
	 You	can	imagine	that	this	will	
put	a	burden	on	a	single	update	
site	(in	terms	of	bandwidth	use).	In	
Eclipse	3.2,	the	Update	Manager	and	
the	Eclipse.org	infrastructure	were	
enhanced	to	deliver	Callisto.	The	goal	
for	the	Update	Manager	was	to	reduce	
the	volume	of	data	that’s	transferred	
and	the	goal	for	the	Eclipse.org	infra-
structure	was	to	create	a	reliable	mir-
roring	story	for	the	Callisto	Update	
Site.

Callisto’s Advantages
	 Callisto	brings	several	advantages	to	
users	and	plug-in	developers	(adopt-
ers)	of	Callisto	projects.	Let’s	start	with	
the	user’s	perspective.

The User’s Perspective
	 From	the	user’s	perspective	Callisto	
radically	changes	the	way	Eclipse	and	
the	participating	Eclipse	projects	get	
on	the	desktop.	It	takes	away	the	need	
to	read	through	the	requirements	
sections	and	collect	them	manually	
from	several	download	pages.	You	just	
download	one	Platform	binary	and	
select	your	desired	projects	from	the	
Callisto	Update	Site	after	installing	and	
starting	the	Platform	binary.

Q: Which projects does WTP depend
on?
A: Who cares. The Eclipse Update Man-
ager will handle this.

	 Callisto	also	has	another	great	
advantage	for	Eclipse	users.	It	creates	
some	kind	of	accountability	for	all	par-
ticipating	projects	and	their	commit-
ters.	Because	Callisto	creates	a	refer-
ence	platform	of	Eclipse	projects	that	
are	intended	to	work	together.	And	
if	they	don’t	now	it’s	easier	to	report	
cross-project	issues	because	you	only	
need	to	reference	the	Callisto	platform	
instead	of	collecting	all	dependencies.

The Developer’s Perspective
	 From	a	developer	and	adopter’s	
perspective,	Callisto	introduces	stabil-
ity	(in	terms	of	dependencies	and	
investments).	Before	Callisto,	it	was	
up	to	you	to	select	the	projects	you’d	
like	to	depend	on.	But	often	the	result	
was	disappointing	because	of	some	
incompatible	dependency	conflicts.	
Now	with	Callisto	the	dependencies	
are	clearly	defined.
	 With	clearly	defined	dependencies	
you	get	a	target	platform	that	will	be	
valid	and	current	for	a	long	time.	So	
Callisto	also	ensures	that	the	invest-
ment	you	put	in	your	adoptions	are	
well	spent	in	the	long	term.

Conclusion
	 On	the	whole,	we	hope	you	enjoyed	
this	quick	tour	of	Callisto	and	some	of	
the	challenges	Callisto	faced.	We	think	
Callisto	will	make	it	easier	for	end	us-
ers	to	tailor	their	Eclipse	experience	by	
selecting	what	they	want	included	in	
their	Eclipse	installation.	Now,	the	only	
logical	thing	to	do	is	give	Callisto	a	try.	
See	http://www.eclipse.org/callisto.		

open source

“From the user’s perspective Callisto
radically changes the way Eclipse

and the participating Eclipse
projects get on the desktop”

JDJ.SYS-CON.com12 July 2006

fter	getting	a	head	of	gray	hairs	and	a	quickly	
receding	hairline,	I	have	learned	that	the	simplest	
solutions	are	often	the	best.	Having	worked	with	
Java	since	1995	and	various	software	development	
lifecycle	methodologies	over	the	years,	I	have	seen	

things	grow	complex	in	these	areas.	Thanks	to	some	new	
lighter-weight	Java	tools	and	agile	methods,	I	can	provide	a	
fresh	perspective	on	developing	Java	applications	in	an	agile	
manner.	
	 This	article	is	different	from	typical	Java	articles	for	two	
reasons.	First,	instead	of	providing	in-depth	details	on	some	
API	or	cool	tool,	it	provides	a	roadmap	for	building	enter-
prise-class	Java	applications	using	agile	methods	and	plain	
old	Java	objects	(POJOs).	Second,	it	covers	a	lot	of	ground,	

from	conceptualization	through	deployment,	so	for	the	
sake	of	brevity,	there	are	minimal	code	excerpts;	however,	
there’s	a	completely	functional	sample	timesheet	application	
called	Time	Expression	(with	source	code)	built	using	Spring,	
Hibernate,	Junit,	and	Ant	available	at	http://visualpatterns.
com/resources.jsp.
	 We	have	a	lot	to	cover	so	let’s	get	started.

Agile Manifesto
	 In	2001,	17	software	experts	(including	Martin	Fowler,	
Kent	Beck,	and	Jon	Kern)	got	together	to	discuss	lightweight	
approaches	to	software	development;	they	jointly	defined	the	
term	agile.	The	outcome	of	this	was	the	“Manifesto	for	Agile	
Software	Development,”	a	set	of	values	and	principles	for	

A roadmap for building enterprise-class
applications using agile methods and POJOs

by Anil Hemrajani

Eclipse
&Hibernate

withSpring,

A

JDJ.SYS-CON.com14 July 2006

15July 2006JDJ.SYS-CON.com

these	agile	methods.	
	 The	term	agile	incorporates	a	wide	range	of	methods;	some	
of	them	include	Extreme	Programming	(XP),	Scrum,	Feature	
Driven	Development,	Agile	Modeling,	and	Crystal.	Many	
methodologies	tend	to	include	both	process	and	modeling	
since	they	often	go	hand-in-hand;	we	will	look	at	both	next.	
For	details	on	the	Agile	Manifesto	and	various	agile	methods,	
visit	the	agilemanifesto.org	and	agilealliance.org	Web	sites.

Agile Processes
	 One	of	easiest	agile	processes	to	understand	is	Scrum.	
While	XP	tends	to	steal	the	limelight	in	the	agile	community,	
it’s	a	bit	more	involved	than	Scrum.	However,	the	two	are	
highly	complementary	since	XP	provides	a	set	of	excellent	
engineering	practices	whereas	Scrum	is	more	about	product/
project	management.	In	fact,	these	days	I	tend	to	recommend	
becoming	“agile”	by	bringing	in	Scrum	first,	then	adding	XP	
practices	one	at	a	time,	as	and	when	needed	since	moving	
entirely	to	XP-based	development	(from	waterfall)	is	a	rude	
awakening	for	many	organizations	and	requires	a	fundamen-
tal	mind	shift	that	many	projects	aren’t	ready	for.	
	 So,	how	does	Scrum	work?	Simple.	We	gather	a	list	of	new	
features	or	change	requests	for	an	application	in	a	product	
backlog.	For	our	sample	application,	Time	Expression,	these	
could	include:
•	 Hourly	employees	will	be	able	to	sign	in	to	a	Web	applica-

tion	and	enter	their	hours	for	each	day	of	a	given	week.
•	 The	employee’s	manager	must	approve	the	timesheet.	
•	 After	a	timesheet	is	approved	or	disapproved,	notification	

is	sent	to	the	employee	indicating	the	updated	status	of	
the	timesheet.

•	 And	so	on…

	 From	here,	we	simply	take	the	highest-priority	features,	
move	them	to	a	sprint	backlog,	and	implement	them	in	one-
month	(or	shorter)	iterations	called	sprints,	and	continue	hav-
ing	monthly	sprints	till	all	the	features	are	implemented.	Each	
sprint	(or	iteration)	contains	the	entire	software	lifecycle,	in	
other	words,	detailed	requirements/analysis,	design,	coding,	
unit/acceptance	testing,	and	deployment	of	production-ready	
code.	Scrum	also	suggests	having	a	planning	meeting	at	the	
beginning	of	a	sprint	and	a	review	at	the	end	of	the	sprint	to	
discuss	lessons	learned	or	the	next	set	of	features	to	imple-
ment	in	the	following	sprint.	Other	than	that,	we	have	a	short	
daily	meeting	(say,	15	minutes)	to	discuss	the	project’s	status.	
Figure	1	depicts	the	Scrum	process.	Visit	controlchaos.com	for	
details	on	Scrum.
	 A	common	theme	of	agile	processes	is	iterative	develop-
ment.	For	example,	XP	works	like	Scrum,	however,	it	uses	the	
concept	of	quarterly	releases	with	weekly	iterations	as	shown	
in	Figure	2.	Also	the	features	are	provided	in	the	form	of	user	
stories,	typically	written	by	the	customer	using	one	to	three	
lines	to	describe	the	feature.	My	explanation	of	XP	is	overly	
simplified;	there’s	a	lot	more	to	it	such	as	pair	programming,	
sit	together,	and	continuous	build.	Visit	extremeprogram-
ming.org	for	details	on	XP.
	 So	now	we’ve	looked	at	two	agile	processes,	Scrum	and	XP.	

 Figure 1 Scrum (Source: mountaingoatsoftware.com)

 Figure 2

 Figure 3

 Figure 4

 Figure 5

 Figure 6

JDJ.SYS-CON.com16 July 2006

These	help	in	gathering	user	feature	requests	and	overall	
project	management.	However,	as	developers,	we	need	to	
implement	features	by	engineering	them	into	software	appli-
cations,	so	let’s	look	at	agile	modeling	techniques	next,	which	
can	help	us	bridge	the	gap	between	user	requirements	and	
coding.

Agile Design
	 According	to	thefreedictionary.com,	a	model	is	“a	prelimi-
nary	work	or	construction	that	serves	as	a	plan	from	which	
a	final	product	is	to	be	made...used	in	testing	or	perfecting	a	
final	product.”	So	here	I’ll	use	the	word	“model”	to	describe	
diagrams	and	other	artifacts.

Agile Model-Driven Development
	 Agile	Model-Driven	Development	(AMDD)	created	by	
Scott	Ambler	provides	guidelines	for	effective	modeling.	
Instead	of	creating	extensive	models,	AMDD	recommends	
creating	“good	enough”	models.	One	of	my	favorite	Scott	
quotes	is	“your	goal	is	to	build	a	shared	understanding,	it	isn’t	
to	write	detailed	documentation.”
	 AMDD	suggests	two	categories	of	models,	requirements	
and	architecture.	Requirements	models	could	include	a	
domain	model	(Figure	3),	usage	models	such	as	user	stories	
or	use	cases	(Figure	4),	and	UI	models	such	as	prototypes	and	
flow	map	(Figures	5	and	6).
	 Architecture	models	could	include	a	freeform	model	like	
the	one	shown	in	Figure	7.
	 There	really	isn’t	a	whole	lot	more	to	AMDD	since	it	pro-
vides	minimal	guidelines	for	agile	modeling.	Visit	agilemod-
eling.com	for	more	details.

Agile Draw
	 Before	moving	to	the	next	topic,	let	me	briefly	mention	a	
new	and	elegantly	simple	technique	called	Agile	Draw,	which	
was	used	to	draw	Figures	3-7.	This	technique	provides	an	
alternative	to	the	heavy-handed	Unified	Modeling	Language	
(UML)	but	can	also	be	used	to	complement	UML.	Agile	Draw	
provides	minimum	guidelines	for	modeling	and	additional	
guidelines	for	adding	appeal	to	these	models	using	graphic	
design	concepts.	The	core	concepts	behind	Agile	Draw	
include	four	basic	components	that	make	it	a	virtually	nota-
tion-free	modeling	technique;	these	concepts	include	circles,	
boxes,	lines,	and	text.	Using	them	you	can	draw	practically	
any	model	by	hand	or	with	a	drawing	program.	
	 Visit	agiledraw.org	for	more	details.

Refactoring
	 One	of	the	core	aspects	of	agile	methods	is	not	to	do	too	
much	design	upfront	so	you	can	start	showing	results	to	
the	customer	quickly	by	developing	actual	software	versus	
producing	comprehensive	documentation	that	no	one	actu-
ally	reads	or	maintains.	Of	course,	the	downside	is	that	it	cuts	
down	on	the	amount	of	design	done	for	an	application.	How-
ever,	this	isn’t	necessarily	a	bad	thing	since	most	program-
mers	find	better	ways	of	doing	things	once	they	begin	coding.	
	 For	example,	we	find	cleaner	ways	of	structuring	our	code	

after	the	first	pass	at	it,	perhaps	by	improving	our	own	design	
or	because	we	learned	a	better	way	of	using	a	framework	
(such	as	Hibernate	or	Spring).	This	code	improvement	is	
known	as	refactoring	and	is	considered	a	continuous	design	
activity.
	 Refactoring	is	more	than	fluff;	it’s	now	appearing	as	a	
menu	option	in	integrated	development	environments	such	
as	Eclipse	and	IntelliJ	IDEA.	Visit	Martin	Fowler’s	Web	site,	
refactoring.com,	for	more	information	on	refactoring	along	
with	a	catalog	of	many	refactoring	techniques.

Other Design Considerations
	 While	refactoring	can	help	improve	code,	there	might	
be	other	things	you	should	consider	upfront	or	in	the	first	
couple	of	iterations.	Some	of	these	include	schemes	for	
transaction	management,	exception	handling,	clustering,	
and	application	security	(authentication,	authorization,	
and	encryption).	Any	enterprise-class	project	that	doesn’t	
at	least	consider	these	“big	picture	factors”	upfront	is	asking	
for	trouble	later.	One	common	problem	found	in	XP	projects	
is	that	a	lot	left	for	refactoring	later	never	happens.	Drawing	
bare-minimum	architecture	models	like	the	one	shown	in	
Figure	7	upfront	can	help	with	general	discussions	about	the	
important	design	considerations	I’ve	mentioned	here.

Agile Java Development
	 Now	that	we’ve	discussed	agile	processes	and	modeling,	
we	are	ready	to	begin	coding.	However,	before	coding	can	
begin,	getting	the	environment	set	up	is	important,	so	let’s	
look	at	that	first	before	discussing	Hibernate,	Spring,	and	
other	technologies.

Environment Setup: JDK, Ant, JUnit, and Version Control
	 Before	Java	application	development	can	begin,	some	
minimal	tools	are	required	such	as	the	Java	Standard	Edition	
Development	Kit,	a	build	tool	like	Apache	Ant,	and	an	im-
portant	tool	for	agile	development,	a	unit-testing	framework	
such	as	JUnit.

Apache Ant
	 Ant	is	commonly	used	to	build	Java	applications,	how-
ever,	it’s	much	more	than	a	build	tool.	For	example,	some	
commonly	found	Ant	tasks	include	javac,	copy,	delete,	move,	
junit,	cvs,	ftp,	mail,	exec,	and	sleep	–	these	can	be	used	for	
everything	from	file	management	to	code	compilation	to	
e-mailing.	You	can	even	write	your	own	custom	tags	and	it	
should	be	no	surprise	that	there	are	many	Open	Source	and	
commercial	Ant	tasks	available.
	 For	details	on	Ant,	visit	the	ant.apache.org.

JUnit and Test Driven Development (TDD)
	 Erich	Gamma	(Gang	of	Four,	Design	Patterns	book)	and	
Kent	Beck	originally	wrote	JUnit.	JUnit	classes	provide	vari-
ous	assert	methods	(for	example,	assertTrue	and	assert-
Null)	that	let	you	test	the	expected	results.	JUnit	is	a	simple	
framework	but	a	powerful	unit-testing	tool.	When	combined	
with	Test-Driven	Development	(TDD;	testdriven.com),	a	

17July 2006JDJ.SYS-CON.com

method	created	by	Kent	Beck,	it	can	significantly	help	you	
write	better,	cleaner,	stabler	code.	TDD	recommends	that	you	
write	your	test	code	before	writing	your	actual	code	–	this	is	a	
fundamental	mind	shift	but	one	I	recommend	you	investi-
gate	further.
	 For	details	on	JUnit,	visit	the	junit.org.

Version Control, Naming Standards and More
	 Finally,	getting	a	development	directory	structure	estab-
lished,	class/file	naming	conventions	defined,	and	version	
control	software	in	place	such	as	Concurrent	Versions	System	
(CVS)	are	crucial	steps	that	a	development	team	should	take	
to	be	highly	effective.

Developing Our Data Tier with Hibernate
	 Relational	databases	and	object-oriented	technologies	
have	been	with	us	for	a	while	now	and	it	appears	they	are	
here	to	stay	for	the	foreseeable	future.	Given	the	fact	that	Java	
developers	typically	work	with	both	technologies,	JDBC	is	
often	used	to	write	the	mapping	code	in	data	access	objects	
(DAOs)	that	can	be	used	to	fetch	and	save	the	data	–	passing	
data	back	and	forth	is	typically	handled	using	data	transfer	
objects	(DTOs).	An	alternate	approach	to	using	JDBC	is	to	
use	EJB	entity	beans,	however,	before	EJB	3.0,	they	would	
have	been	considered	heavy-handed	since	they	were	remote	
objects.	So,	what	do	you	do	if	you	want	an	agile	approach	to	

Java	persistence	using	POJOs?	One	answer	is	an	ORM	frame-
work	such	as	Hibernate.
	 Object-relational	mapping	(ORM)	code	eliminates	the	
need	for	writing	JDBC	calls	by	hand,	lets	you	do	the	mapping	
in	XML	files	and	then	simply	work	with	database	records	as	
POJOs.	Hibernate	is	a	popular	ORM	framework	widely	used	
in	the	Java	community.	In	fact,	due	to	its	popularity,	the	EJB	
3.0	specification	follows	the	Hibernate	model	very	closely.	
	 Hibernate	supports	a	dozen	or	so	relational	databases	
(through	its	dialect	classes).	To	use	it,	we	first	need	to	con-
figure	the	database	connection,	typically	in	a	file	called	hiber-
nate.cfg.xml.	Then,	for	each	table	to	be	used,	we’d	typically	
map	the	table	to	a	Java	class.	For	example,	the	following	line	
shows	a	sample	mapping	for	a	table	called	Department	(in	
a	file	called	Department.hbm.xml)	that	maps	to	a	Java	class	
called	Department	as	well.

<class name=”com.visualpatterns.timex.model.Department”

 table=”Department”>

	 This	next	line	shows	mappings	for	a	couple	of	the	col-
umns,	with	departmentCode	being	a	primary	key	in	database	
terms	and	a	unique	object	identifier	in	Hibernate/ORM	
terms:

<id name=”departmentCode” column=”departmentCode”>

<property name=”name” column=”name”/>

	 Once	the	database	and	mappings	have	been	properly	
configured,	we	can	simply	obtain	a	Hibernate	Session	(es-
sentially	a	JDBC	database	connection)	from	a	SessionFactory	
and	work	with	the	record	as	a	Java	object,	as	demonstrated	
in	the	code	below,	which	fetches	a	Department	record	with	a	
departmentCode	of	“IT”:

Session session = sessionFactory.getCurrentSession();

department = (Department) session.get(Department.class, “IT”);

	 As	you	might	guess,	Hibernate	also	provides	methods	to	
save	and	delete	database	records	(objects).	Some	of	these	
methods	include	save,	load,	get,	update,	merge,	saveOrUp-
date,	and	delete.
	 One	of	Hibernate’s	most	powerful	features	is	its	Hibernate	
Query	Language	(HQL).	This	is	a	SQL-like	language	and	is	
extremely	robust	since	it	supports	such	things	as	joins,	ag-
gregate	functions,	parameter	substitution,	expressions,	and	
sorting.	The	extremely	simple	example	below	demonstrates	
how	we	can	fetch	a	java.util.List	of	objects	from	the	Depart-
ment	table:

departmentList = session.createQuery(“from Department ORDER BY

name”).list();

	 We’ve	merely	scratched	the	surface	here	since	Hibernate	
provides	many	more	features;	some	of	them	include	record	
locking,	associations,	native	queries,	stored	procedure	sup-

 Figure 7

JDJ.SYS-CON.com18 July 2006

OPNET Panorama offers powerful analytics for rapid troubleshooting of complex
J2EE/.NET applications. Panorama quickly identifies how application, web, and data-
base servers are impacting end-to-end performance. With Panorama, you can pin-
point the source of a problem, so time and money aren't spent in the wrong places.

The world’s most successful organizations rely on OPNET's advanced
analytics for networks, servers, and applications.

OPNET Technologies, Inc. 7255 Woodmont Avenue, Bethesda, Maryland 20814 phone: (240) 497-3000 • e-mail: info@opnet.com • NASDAQ: OPNT

© 2006 OPNET Technologies, Inc. All rights reserved. OPNET is a registered trademark of OPNET Technologies, Inc.

www.opnet.com/pinpoint

MAKE ANSWERS TO PERFORMANCE PROBLEMS COME TO YOU.

Register for an
Online Webinar

port,	scrollable	iterations,	interceptors,	and	filters.
	 Visit	hibernate.org	for	more	details.

Developing Our Web Tier with Spring
	 Spring	(springframework.org)	is	one	of	those	framework	
that	is	almost	impossible	to	describe	in	one	short	sentence	
because	it	does	so	much.	For	example,	it	supports	IoC	or	
inversion	of	control	(martinfowler.com/articles/injection.

html),	a	complete	Web	MVC	framework,	JDBC,	ORM,	JEE/Web	
Services,	aspect-oriented	programming	(AOP),	declarative	
transaction	management,	job	scheduling,	mail,	and	more.
	 Using	Spring	provides	several	benefits	like	easier	and	
cleaner	unit	testing,	the	ability	to	use	POJOs	in	lightweight	
containers	(say,	Apache	Tomcat)	with	enterprise	services	
such	as	declarative	transaction	management,	convenient	
data	access,	and	consistent	data	exception	handling	through	
ORM	and	JDBC	integration,	and	job	scheduling	in	a	Web/ap-
plication	server.

The Spring Web MVC Framework
	 The	Spring	Web	MVC	Framework	(or	simply	Spring	MVC)	
is	a	robust,	flexible,	well-designed	framework	for	rapidly	
developing	Web	applications	using	the	MVC	design	pattern.	
The	benefits	to	using	this	Spring	module	are	similar	to	those	
you	get	from	the	rest	of	the	Spring	Framework;	however,	one	
additional	and	very	key	benefit	is	the	ability	to	bind	directly	
to	business	objects	unlike	other	frameworks	that	require	
you	to	extend	special	sub-classes.	Let’s	review	some	Java	and	
configuration-related	concepts	for	this	framework.

Spring MVC Java Concepts
	 The	key	Java	concepts	in	Spring	MVC	are:
•	 Controller
•	 Model	and	view	object
•	 Command	(form-backing)	object
•	 Validator	object
•	 Tag	libraries

	 One	of	the	good	features	of	Spring	MVC	is	that	it	provides	a	
large	number	of	controller	classes	to	choose	from	(see	Figure	
8).	Of	course,	this	can	be	a	bad	thing	when	you’re	trying	to	
learn	this	framework	because	deciding	which	to	use	can	be	
a	minor	challenge.	For	example,	I	tend	to	use	SimpleForm-
Controller	for	HTML	forms	and	UrlFilenameViewController	
when	I	don’t	need	a	controller.	In	some	cases,	I	simply	
implement	the	Controller	interface	when	I	want	a	no-forms	
controller.
	 Many	of	the	key	GET-	and	POST-related	Spring	controller	
methods	return	a	ModelAndView	object	that	can	contain	
model-related	data	and	the	name	of	a	view	(or	reference	to	a	
view	object).	For	controller	classes	that	support	HTML	forms,	
we	can	have	optional	command	and	validator	objects	to	bind	
the	HTML	form	fields	to	Java	objects	and	validate	the	input	
data,	respectively.	As	for	the	view	itself,	Spring	supports	a	
variety	of	view	technologies	including	JSP,	Velocity,	and	Jas-
perReports.	Let’s	look	at	how	we	might	use	JSP	for	our	views.
	 Figure	5	shows	a	sample	forms	screen	that	can	be	devel-
oped	in	JSP	using	Spring’s	bind	tag	library.	The	Spring	bind	
tag	library	is	simple	yet	powerful.	It’s	typically	used	in	JSP	
files	via	the	<spring:bind>	tag	that	essentially	binds	HTML	
form	fields	to	the	command	object.	Furthermore,	it	provides	
access	to	special	variables	in	JSP	that	can	be	accessed	using	
JavaServer	Pages	Standard	Tag	Library	(JSTL)	expressions	
such	as	${status.value}.	The	code	excerpt	below	demonstrates	

 Figure 9

 Figure 10

 Figure 11

JDJ.SYS-CON.com20 July 2006

how	the	spring:bind	tag	library	works	–	notice	how	we	bind	
directly	to	the	Department	domain	(business)	object	that	we	
looked	at	in	the	Hibernate	section:

<spring:bind path=”command.departmentCode”>

 <input

 name=’<c:out value=”${status.expression}”/>’

 type=”text” size=”10”

 maxlength=”30”>

</spring:bind>

	 Besides	spring:bind,	Spring	2.0	introduces	some	new	tag	
libraries	that	ease	working	with	individual	HTML	form	ele-
ments.	Some	of	these	include	form:input,	form:textarea,	and	
so	on.

Spring MVC Configuration Concepts
	 Till	now	we’ve	only	looked	at	Java-related	concepts	for	
Spring	MVC.	Of	course	Spring	also	has	configuration	aspects.	
For	starters,	its	DispatcherServlet	class	has	to	be	configured	
in	the	Web	server’s	Web.xml	file,	so	files	matching	a	certain	
extension	(like	.htm)	can	be	processed	by	Spring	MVC.	Once	
this	is	configured,	we’re	in	the	world	of	Spring	MVC.	From	
here,	we	configure	view	resolvers	and	handler	mappings	in	a	
Spring	application	context	file.	View	resolvers	map	incoming	
URLs	to	actual	view	names.	Handler	mappings	map	incom-
ing	URLs	to	controller	classes.

Spring ORM
	 One	of	the	beautiful	things	about	Spring	is	its	support	
for	third-party	APIs	such	as	JDBC,	JAX-RPC,	Hibernate,	and	
many	others.”	For	example,	if	we	use	Spring	with	Hibernate,	
we	can	eliminate	the	code	required	to	manage	Hibernate’s	
sessionFactory,	session	and	programmatic	transaction	man-
agement.	The	benefits	of	using	Spring	with	Hibernate	is	that	
it	cuts	down	the	Hibernate-related	code	by	almost	a	half	and	
provides	additional	benefits	such	as	easier	testing,	consis-
tent	exception	hierarchy,	and	management	of	Hibernate	
resources.
	 Visit	springframework.org	for	more	details.

Effectively Developing Java Code with Eclipse
	 In	my	book	I	have	a	chapter	dedicated	to	the	Eclipse	SDK.	
Initially	I	planned	to	use	a	generic	title	but	later	I	changed	it	
to	“The	Eclipse	Phenomenon!”	because	that’s	the	best	way	
to	describe	what’s	happening	in	the	Eclipse	community.	
No	matter	how	good	another	Java	IDE	might	be,	the	sheer	
number	of	plug-ins	available	for	Eclipse	is	hard	to	match.	
If	you	do	a	search	for	the	words	for	“eclipse	plugins”	on	the	
Web,	you’ll	literally	get	millions	of	matches.	In	other	words,	
the	Eclipse	community	is	exploding!
	 The	Eclipse	platform	is	essentially	a	framework	that	pro-
vides	a	set	of	services	that	other	plug-ins	can	build	on.	Each	
plug-in	is	developed	to	the	same	platform,	which	translates	
into	a	set	of	highly	integrated	tools.	The	Eclipse	Web	site	cur-
rently	has	many	sub-projects	underway	including	everything	

from	support	for	various	programming	languages	to	model-
ing	plug-ins	to	reporting,	testing,	and	performance	to	almost	
everything	else	required	for	software	development.
	 The	core	concepts	of	Eclipse	include	a	workspace,	es-
sentially	a	directory	for	your	projects.	The	first	main	screen	
in	Eclipse	is	known	as	the	workbench	(see	Figure	9).	The	
workbench	contains	a	set	of	editors	and	views	organized	as	
perspectives.	Perspectives	are	task-specific	layouts	of	editors	
and	views.
	 One	of	the	core	Eclipse	plug-ins	is	the	Java	Development	
Tool	(JDT).	It’s	an	extremely	robust	plug-in	with	support	for	
Java	development	such	as	managing	Java-related	files	(.java,	
.class,	and	.jar),	Java	views,	compilation,	code	formatting,	
debugging,	refactoring,	and	syntax	highlighting	–	in	fact,	the	
JDT	plug-in	is	a	full-blown	product	in	itself.
	 Another	important	plug-in	is	the	Eclipse	Web	Tools	Plat-
form	(WTP),	intended	for	developing	JEE	Web	applications.	It	
provides	editors	like	JSP,	HTML,	CSS,	JavaScript,	and	WSDL.	
It	also	provides	extremely	handy	database	query	and	model	
tools	to	explore	the	database,	run	queries,	and	analyze	the	
data.	Of	course,	the	ability	to	create	and	test	Web	Services	
easily	is	another	major	feature	of	this	plug-in.	JDJ	published	a	
series	of	articles	by	Boris	Minkin	on	using	WTP	(see	http://
java.sys-con.com/author/minkin.htm).
	 Apart	from	the	plug-ins	provided	on	the	Eclipse.org	Web	
site,	there’s	no	shortage	of	plug-ins	available	for	Eclipse	on	
the	Web.	Sites	such	as	eclipseplugincentral.com,	eclipse-
plugins.2y.net,	and	myeclipseide.com	have	a	large	number	of	
plug-ins.
	 Other	Eclipse	features	include	team	support	via	tight	
integration	with	CVS,	a	robust	help	system,	a	large	number	of	
preferences,	and	shortcut	keys.
	 In	short,	Eclipse	provides	tools	to	work	on	all	tiers	of	an	
applications,	that	is,	data,	Web,	and	business.

Beyond the Basics
	 If	we	lived	in	a	perfect	world,	we	would	simply	gather	
user	requirements,	code	them,	and	deliver	perfectly	stable	
applications	that	would	run	smoothly	without	intervention.	
However,	as	developers,	we	know	it	doesn’t	quite	work	that	
way	and	that	there	are	times	to	troubleshoot	problems	or	
monitor	the	“health”	of	our	applications;	so,	let’s	review	some	
techniques	that	can	help.

Debugging
	 Debugging	is	typically	a	process	of	locating	and	fixing	
a	defect,	although	it	can	also	be	used	to	step	through	
code	to	ensure	the	logic	works	right.	Eclipse’s	JDT	plug-in	
provides	a	powerful	Java	debugger	that	lets	us	debug	
local	Java	programs	or	ones	running	on	a	remote	Java	
server.	Like	most	debuggers,	the	Eclipse	JDT	debugger	can	
step	through	code	(one	line	at	a	time	or	by	jumping	to	a	
breakpoint)	and	inspect	variables.	It	also	provides	a	very	
useful	feature	known	as	Hotswap	that	lets	us	change	code	
on-the-fly,	recompile,	and	continue	debugging	in	the	same	
session.	This	is	a	handy	feature	since	setting	up	a	debug-

21July 2006JDJ.SYS-CON.com

ging	session	just	the	way	you	want	it	can	take	time.	Figure	
10	demonstrates	how	we	can	debug	our	Java	code,	see	the	
data	in	the	database,	and	see	the	console	output	–	all	in	a	
highly	integrated	fashion	using	two	completely	different	
plug-ins	JDT	and	WTP.

Profiling
	 Java	profilers	have	been	around	for	almost	as	long	as	Java.	
Among	other	things,	they	let	us	analyze	the	heap	for	memory	
usage	and	leaks,	CPU	utilization,	trace	objects,	and	methods,	
and	determine	performance	bottlenecks.	A	variety	of	Open	
Source	profilers	are	available	out	there,	as	well	as	com-
mercial	ones	(like	YourKit	Java	Profiler	and	Quest’s	JProbe	
Suite).	Some	run	as	standalone	Java	programs;	others	can	be	
deployed	to	a	servlet	container;	and	still	others	are	available	
as	Eclipse	plug-ins.	So,	if	you’re	looking	for	an	Open	Source	
profiler,:	www.manageability.org/blog/stuff/open-source-
profilers-for-java/view/	lists	a	dozen	of	them.
	 One	other	profiler	that’s	supposedly	one	of	the	best	is	the	
NetBeans	Profiler,	however,	I	haven’t	tried	it	out	yet	but	the	
screenshots	look	sleek.	Visit	profiler.netbeans.org	to	learn	
more	about	this.

Logging
 Logging	is	an	important	aspect	of	software	development	
and	varies	from	print	statements	to	complex	database-based	
logging.	Logging	types	can	include	audit	logging,	tracing,	
and	error	reporting.	
	 Two	logging	frameworks	commonly	found	in	the	Java	
world	are	Apache	Log4J	(logging.apache.org/log4j/)	and	
JDK	logging	(java.sun.com).	Another	option	is	to	use	
Apache’s	Jakarta	Commons	Logging	(jakarta.apache.org),	
which	provides	a	thin	bridge	between	various	logging	
frameworks,	including	Log4J	and	JDK	logging.	While	we	can	
use	simple	print	statements	to	output	messages	from	your	
programs,	logging	frameworks	let	us	control	the	output	
of	our	messages	according	to	destination	(files,	database,	
remote),	levels	(fatal,	error,	warning),	and	format	(date	and	
time).	In	addition,	logging	frameworks	provide	benefits	
such	as	automatically	rolling	over	log	files	when	they	reach	
a	certain	length.
Monitoring
	 Java	Platform	Standard	Edition	(JSE)	5.0	provides	built-in	
remote	monitoring,	management,	and	the	JConsole	Swing-

based	utility	(see	Figure	11)	to	monitor	applications	that	
run	using	JSE	5.0	or	later	versions.	These	tools	can	be	used	
to	view	the	resource	utilization	of	Java	applications.	For	ex-
ample,	it	can	help	detect	memory	issues,	class	loading,	and	
garbage	collection,	control	JDK	logging	levels,	and	manage	
an	application’s	Managed	Beans	(MBeans).	Furthermore,	
Spring’s	JMX	support	lets	us	automatically	register	POJOs,	
which	gives	us	a	powerful	paradigm	because	we	could	easily	
write	business-type	objects	that	can	be	monitored	(instead	
of	the	typical	low-level	technical	stuff).	For	example	in	
our	sample	application,	this	could	include	the	number	of	
timesheet	records	fetched	and	the	number	of	logins.

Conclusion
	 We’ve	covered	a	lot	of	ground	in	this	article.	As	I	mentioned	
at	the	beginning,	this	is	a	road	map	for	one	way	of	doing	agile	
Java	development.	However,	what	would	an	article	in	a	Java	
magazine	be	without	some	Java	code?	So	I	have	a	completely	
functional	sample	timesheet	application,	downloadable	(and	
a	deployable	war	file)	at	http://visualpatterns.com/resources.
jsp.	The	resource	section	below	also	provides	a	summary	of	
links	specified	throughout	the	article.
	 I	hope	this	article	has	provided	some	guidelines	for	devel-
oping	Java	in	an	agile	manner.	Cheers!

Resources
•	 Agile Data:	agiledata.org	
• Manifesto for Software Development: agilemanifesto.org	
• Agile Modeling: agilemodeling.com	
• Scrum: controlchaos.com		
• Eclipse Foundation: eclipse.org	
• Extreme Programming: extremeprogramming.org
• Hibernate: hibernate.org
• Martin Fowler: martinfowler.com
• The Spring Framework: springframework.org	
• Test Driven Development: testdriven.com	
• Author’s Web site: visualpatterns.com		

Anil Hemrajani is the author of the book Agile Java Development with Spring, Hibernate

and Eclipse. He has 20 years of experience in IT working with Fortune 100 companies

and smaller organizations. He is the founder of Isavix Corporation , a successful IT

service company, and DeveloperHub.com, formerly isavix.net, an award-winning online

developer community. He has published numerous articles in well-known trade journals

and gotten several awards. Anil can be reached via his Web site, VisualPatterns.com.

“If we lived in a perfect world, we would simply
gather user requirements, code them,

and deliver perfectly stable applications that
would run smoothly without intervention”

JDJ.SYS-CON.com22 July 2006

n	my	earlier	article	“Moving	to	
SOA	in	J2EE	1.4”	published	in	the	
February	issue	of	JDJ	I	introduced	
you	to	the	new	object	distribu-

tion	model	based	on	Web	Services	that	
became	available	to	Enterprise	Java	
applications	with	the	advent	of	Java	
EE	1.4.	In	this	article	I	want	to	look	at	
the	security	features	available	in	Java	
EE	SOA.	
	 Here	you’ll	get	thehands-on	knowl-
edge	of	Web	Services	security	in	Java	
EE	that	we	acquired	when	adding	
security	support	to	OptimalJ-gener-
ated	SOA	applications.	It’s	based	on	
the	J2EE	1.4	specification	itself	as	well	
as	on	what	is	actually	supported	and	it	
works	in	three	major	J2EE	1.4	applica-
tion	servers	—	JBoss	4.0.4,	WebSphere	
6.0.2.x,	and	WebLogic	9.1.	You’ll	also	
learn	about	the	new	mandatory	secu-
rity	features	available	to	Web	Service	
endpoints	in	Java	EE	5.0.

Overview of Security in Java EE
	 Java	EE	comes	with	a	mature	
security	model	that	provides	for	the	
guaranteed	features	that	have	to	be	
supported	by	all	compliant	application	
servers:	authentication,	authorization,	
confidentiality,	and	integrity.	Though	
not	yet	required	by	the	specification,	
most	high-end	application	servers	
also	support	some	sort	of	auditing	of	
security-related	events	and	non-re-
pudiation	—	in	other	words	a	way	of	
preventing	an	invocation	sender	from	
denying	responsibility	for	the	action	
—	for	communicating	with	Web	Ser-
vice	components.
	 Authorization	is	based	on	logical	
security	roles	that	are	simple	names	
defined	by	the	component	provider	or	
application	assembler	in	XML	deploy-
ment	descriptors.	The	code	under-
neath	all	Java	EE	components	—	JSPs,	

servlets,	and	Enterprise	JavaBeans	
—	can	be	restricted	declaratively	
based	on	logical	security	roles.	In	the	
case	of	EJBs,	access	can	be	limited	on	
an	Enterprise	Bean’s	method	level,	
whereas	access	to	JSPs	and	servlets	is	
enforced	based	on	their	URL	and	the	
HTTP	method	utilized	(e.g.	POST,	GET,	
etc.).	Besides	declarative	authoriza-
tion,	programmatic	authorization	is	
also	supported	so	that	a	component’s	
code	can	dynamically	inquire	whether	
the	security	context	of	the	current	user	
is	associated	with	a	particular	logical	
security	role	and	make	a	decision	
based	on	this	analysis.	How	a	given	
principal	is	actually	mapped	to	a	set	of	
security	roles	depends	on	the	Java	EE	
notion	of	a	security	domain	and	the	
principal	authentication	mechanisms	
associated	with	the	domain.
	 The	confidentiality	and	integrity	
requirements	are	met	at	the	trans-
port	layer	with	the	help	of	the	Secure	
Sockets	Layer	(SSL	3.0)	protocol	and	
the	related	IETF	standard	Transport	
Layer	Security	(TLS	1.0)	protocol.	For	
SSL	and	TLS	only	X.509	certificates	are	
supported	for	authenticating	princi-
pals.	Kerberos-based	authentication	
mechanisms	in	TLS	are	presently	
regarded	as	optional	and	aren’t	imple-
mented	by	the	application	servers	this	
article	concentrates	on.
	 The	authentication	security	require-
ment	is	by	far	the	most	difficult	to	
explain	since	it	requires		understand-
ing	the	Java	EE	notion	of	a	security	
domain,	which	is	essentially	a	security	
mechanism	used	to	authenticate	
the	user.	Here	are	the	three	arbitrary	
examples	of	security	domains:

1.	A	security	domain	where	users	are	
authenticated	based	on	their	X509	
certificates	presented	during	an	SSL	

handshake.	In	this	case	the	protocol	
used	by	the	client	for	communicat-
ing	with	the	application	server	can	
be	HTTPS,	IIOP/SSL,	or	JRMP/SSL.

2.	A	security	domain	that	uses	the	SRP	
protocol	in	communicating	a	user’s	
name	and	password	to	the	server	
in	a	secure	fashion.	Here	the	com-
munications	protocol	that	the	client	
uses	can	be	JRMP.

3.	A	security	domain	that	uses	the	
HTTP	Basic	Authentication	in	com-
municating	a	user	name	and	pass-
word	to	the	server.	Such	a	security	
domain	will	use	either	HTTP	or	
HTTPS	as	the	supported	communi-
cations	protocol.

	 Different	security	domains	entail	
different	types	of	principals	for	rep-
resenting	users.	In	the	first	security	
domain	presented	above,	a	principal	
will	be	derived	from	an	X509	certificate	
or	a	certificate	chain	that	the	user	pre-
sented	during	an	SSL	handshake.	In	
the	second	example,	a	principal	will	be	
taken	from	the	user	name	specified	by	
the	client.	Here’s	a	code	sample	taken	
from	JBoss	that	shows	how	a	certificate	
chain	can	be	mapped	to	a	principal:

public Principal toPrinicipal(

 X509Certificate[] certs) {

 Principal subject =

 certs[0].getSubjectDN();

 return subject;

}

	 Thus	a	security	domain	deals	with	
a	set	of	principals	of	a	particular	
kind	(e.g.,	based	on	X509	certificates,	
Kerberos	tickets,	plain	user	names,	
etc.).	This	set	is	termed	a	principal	
realm.	For	each	principal	realm,	there’s	
mapping	between	its	principals	and	
the	one	or	more	logical	security	roles	

security

Andrei Iltchenko

Web Services
Security in Java EE

I

Andrei Iltchenko

is a development

lead at Compuware

Corporation where

he works on the MDA

product OptimalJ and

is responsible for the

business logic area of

OptimalJ-generated

J2EE applications. He

is also a Sun certified

Java developer for

Java Web Services, a

Sun Certified Business

Component Developer,

a Sun Certified Devel-

oper, and a Sun Certi-

fied Programmer.

The present and future

JDJ.SYS-CON.com24 July 2006

that	are	used	in	Java	EE	applications.	
Application	servers	offer	a	plethora	of	
ways	to	represent	a	principal	realm,	
the	most	common	of	which	are	a	local	
OS	user	registry,	an	LDAP	server,	an	
RDBMS	schema,	a	Kerberos	KDC,	or	a	
simple	.properties	files.
	 Modern	Java	EE	application	servers	
support	different	security	domains	
or	let	users	define	their	own	based	on	
the	JAAS	login	modules	available.	See	
the	sidebar	“What	is	JAAS?”	for	more	
information	on	using	JAAS	in	Java	EE.
	 When	a	Java	EE	application	is	
deployed,	the	deployer	assigns	the	
application	modules	to	the	security	
domains	that	have	been	configured	in	
the	targeted	application	server	instal-
lation.	Typically,	the	components	of	a	
Java	EE	module	(an	EJB	.jar	module	or	
a	Web	.war	module)	are	all	assigned	to	
the	same	security	domain;	some	appli-
cation	servers	let	the	components	of	a	
given	module	be	assigned	to	different	
security	domains,	but	this	practice	is	
generally	avoided	since	it	can	easily	
lead	to	confusion.	Java	EE	doesn’t	stan-
dardize	the	scope	of	a	security	domain	
and	leaves	it	up	to	vendors.	At	the	mo-
ment	all	high-end	application	servers	
let	a	security	domain	span	multiple	
application	server	installations	(which	
typically	form	a	cluster).

Security Context Propagation and
Single Sign-on
	 A	Java	EE	application	server	features	
three	different	containers	(there’s	also	
an	applet	container	that	is	typically	
embodied	by	a	Web	browser	program):	
a	Web	Container	that	hosts	JSPs	and	
servlet	components,	an	EJB	Container	
where	EJB	components	are	deployed,	
and	an	Application	client	container	
(see	the	sidebar	“Application	client	
containers”	for	more	details	on	this	
concept).	EJB	and	Web	Containers	
are	typically	collocated,	and	compo-
nents	running	in	the	Web	Container	
can	access	EJBs	of	the	corresponding	
EJB	container.	Figure	1	depicts	the	
relationships	between	the	three	con-
tainers	and	various	ways	in	which	a	
client	can	access	a	Java	EE	application.	
For	simplicity’s	sake	I	depicted	all	the	
enterprise	components	as	running	in	
the	same	application	server	on	a	single	
node,	but	it	doesn’t	have	to	be	this	
way;	modern	application	servers	let	
them	be	distributed	among	multiple	
nodes.
	 The	following	are	the	two	typical	
usage	scenarios	shown	in	Figure	1	

involving	access	to	an	enterprise	Java	
application:

1.	A	user	accesses	a	JSP	or	a	servlet	
component	deployed	in	a	Web	
Container	with	a	Web	browser.	
He	authenticates	himself	to	the	
Web	Container	using	either	1)	a	
username	and	password	that	his	
Web	browser	prompts	him	to	enter	
(Basic	HTTP	Authentication)	or	2)	
an	X509	certificate	that	the	browser	
lets	the	user	choose	from	a	pre-
installed	set	of	user	certificates.	The	
servlet	component	carries	out	the	
presentation-related	activities	and	
invokes	an	EJB	Session	component	
(using	a	local	invocation	in	the	
same	JVM	or	RMI-based	protocol)	
to	carry	out	the	business	logic-relat-
ed	tasks.	To	fulfill	the	business	logic	
task	the	session	bean	can	invoke	
an	Entity	EJB,	call	on	an	EIS	with	a	
help	of	a	JCA	resource	adapter,	or	
carry	out	some	JDBC-based	data	
access.	After	completing	its	work,	
the	session	component	returns	the	
processing	results	to	the	servlet	
component,	which	in	turn	renders	
them	to	the	user	in	HTML.

								The	user	can	then	invoke	the	

servlet	or	some	Web	component	or	
JSP	again.The	application	server	
maintains	a	session	with	the	user’s	
browser	and	doesn’t	require	re-
authentication.

2.	A	Java	client	application	uses	either	
RMI-IIOP	or	RMI-JRPM	to	access	
the	server.	The	application	prompts	
the	user	for	a	name	and	credentials	
and	authenticates	itself	to	the	server	
with	the	help	of	JAAS	and	one	or	
more	JAAS	the	login	modules	pro-
vided	by	the	vendor.	For	RMI-IIOP,	
the	CSIv2	SAS	protocol	will	most	
likely	be	used	to	communicate	
authentication	data	to	the	server.	
The	client	application	accesses	an	
EJB	deployed	in	an	EJB	Container.	
Like	the	first	scenario,	the	invoked	
EJB	can	call	other	EJBs	or	enterprise	
services.

								The	client	application	then	goes	
on	to	invoke	another	EJB	without	
having	to	re-authenticate	the	user.	
Listing	1	is	an	example	of	such	a	cli-
ent	application	for	WebSphere.

	 A	lot	can	be	gathered	from	these	
scenarios	and		from	Figure	1.	
	 First,	they	show	that	external	clients	
can	access	components	running	in	the	

What Is JAAS?
JAAS stands for Java Authentication and Authorization Service. It provides a Java implementation of the

Pluggable Authentication Module (PAM) framework that was pioneered in the Solaris operating system.

Modern application servers use JAAS to authenticate principals accessing resources running in the server.

It is also used heavily by Java clients running in an application container as a way of authenticating

themselves to the application server and benefiting from single sign-on.

The article “JAAS in the Enterprise” gives a pretty good idea of the future direction that this specification is

likely to take in upcoming releases of Java Enterprise Edition.

Application Client Containers
Application client containers are a way of giving remote J2SE clients access to the components and

services of a Java EE application server.

Despite its rather imposing name, an application client container can be nothing more than a set of

.jar libraries that let a standalone Java application access the JNDI tree of an Java EE application server,

whereby gaining access to the Enterprise Beans and other enterprise services such as JMS, container-man-

aged JDBC data sources, and JavaMail.

For JBoss AS the set of .jar libraries is all that’s required to set up a client container on a host where a Java

SE runtime is installed (see http://wiki.jboss.org/wiki/Wiki.jsp?page=J2EEClient for more information).

For WebSphere and WebLogic, the setup is more involved — both require that a client host have access

to the AS installation and provide an application client launch program that must be used to execute a

client program.

25July 2006JDJ.SYS-CON.com

WEB	container	by	using	either	HTTP	
or	HTTPS	and	components	hosted	
in	the	EJB	container	with	RMI-IIOP	
or	RMI-JRMP.	They	also	show	that	
components	can	use	1)	local	invoca-
tions	in	the	same	JVM,	2)	RMI-IIOP,	
or	3)	RMI-JRMP	for	inter-component	
communication.	Which	of	the	three	is	
used	depends	on	the	vendor	and	the	
configuration	of	the	application	server.
	 Second,	in	both	examples	the	cli-
ents	authenticated	themselves	to	the	
container	before	being	able	to	use	a	
component,	and	the	application	server	
propagated	the	established	client	
security	context	when	the	component	
invoked	the	other	EJBs.	
	 Third,	the	samples	demonstrate	
Java	EE	support	for	single	sign-on	(fre-
quently	abbreviated	as	SSO),	thanks	to	
which	needless	re-authentications	are	
avoided	for	subsequent	application	
are	avoided	server	access.	The	propa-
gation	of	the	client	security	context	
and	single	sign-on	are	two	important	
security	characteristics	of	Java	EE.	
	 Application	servers	let	the	client	
security	context	be	propagated	if	
local	JVM	invocations,	RMI-IIOP,	or	
RMI-JRMP	are	used	as	inter-compo-
nent	communication	transports	and	
the	component	targeted	belongs	to	
the	same	security	domain.	A	client	
security	context	typically	consists	of	a	
principal	object	(whose	type	depends	
on	the	security	domain	of	the	Java	
EE	application)	and	zero	or	more	as-
sociated	credentials	presented	during	
authentication.	Java	EE	specifies	RMI-
IIOP	and	the	accompanying	CSIv2	

OMG	spec	as	the	only	interoperable	
way	of	propagating	a	client	security	
context	that	must	be	understood	
and	supported	by	all	compliant	ap-
plication	servers	(a	security	context	
propagated	with	RMI-JRMP	is	only	
meaningful	if	the	targeted	component	
runs	in	an	application	server	from	the	
same	vendor).	Using	CORBA-related	
standards	for	interoperability	among	
disparate	application	servers	reflects	
the	CORBA-oriented	nature	of	the	
early	Java	EE	specifications	that		holds	
to	this	day.
	 The	way	single	sign-on	capabili-
ties	are	gained	depends	on	the	client.	
For	Web	browser	clients,	the	Web	
Container	uses	either	HTTP	cookies	
or	URL	rewriting	to	track	a	session.	
If	the	browser	accesses	the	container	
through	HTTPS	then	SSL	Sessions	can	
also	be	used.	Which	of	the	three	mech-
anisms	is	available	depends	on	the	
application	server	and	its	configura-
tion.		Some	servers	such	as	WebSphere	
support	all	three,	others	don’t.
	 With	a	Java	application	client,	
user	authentication	credentials	are	
established	during	the	JAAS	login	and	
are	then	kept	in	a	thread	local	variable	
of	the	Java	application	thread	that	
executes	the	code	in	Listing	1.	The	
credentials	will	then	be	used	for	each	
subsequent	application	server	access	
by	the	thread	until	the	logout	state-
ment	has	been	executed.
	 Besides	the	default	mode	in	which	
an	established	client	security	context	
is	propagated	during	inter-compo-
nent	communication,	Java	EE	lets	a	

given	enterprise	component	specify	
another	identity	(a	so-called	run-as	
identity)	that	will	be	in	effect	when	the	
component	accesses	other	enterprise	
resources.	The	run-as	identity	mode	
is	typically	used	only	when	there’s	
no	client	security	context	(e.g.,	with	
message-driven	beans	and	ejbTimeout	
callback	methods	of	Enterprise	Beans	
that	implement	the	TimedObject	
interface).	For	instance,	in	OptimalJ-
generated	J2EE	applications,	users	are	
given	a	warning	whenever	they	model	
a	message-driven	bean	or	an	enter-
prise	component	that	uses	the	timer	
service	but	doesn’t	specify	a	run-as	
identity.	

Security in J2EE 1.4 for
Web Service Endpoints
	 By	far,	the	most	visible	change	in	
J2EE	1.4	is	the	introduction	of	Web	
Service	endpoints,	which	effectively	
provides	a	viable	alternative	model	
for	component	distribution	and	
interoperability	that	can	compete	with	
CORBA.	The	Web	Service	endpoint	is	
a		term	used	to	describe	Web	Ser-
vice	components	deployed	in	a	J2EE	
container.	As	I	explained	in	my	earlier	
article,	a	service	endpoint	can	be	
implemented	using	a	stateless	session	
bean,	in	which	case	it	runs	in	the	EJB	
container,	or	as	a	Java	class	that’s	regis-
tered	as	a	servlet,	in	which	case	it	runs	
in	the	WEB	container	and	is	called	a	
JAX-RPC	endpoint.	Associated	with	
each	service	endpoint	is	its	service	
endpoint	interface	(SEI).	As	prescribed	
by	the	WS-I	Basic	Profile,	J2EE	limits	
SOAP	to	HTTP	and	HTTPS	as	its	only	
interoperable	underlying	transport	
protocols.	
	 Figure	2	shows	the	component	
landscape	in	J2EE	1.4.	It’s	analogous	
in	intent	to	Figure	1	and	complements	
it	by	emphasizing	the	entries	to	the	ap-
plication	server	through	Web	Service	
endpoints.	There	are	a	number	of	
important	differences	between	Figure	
1and	Figure	2.	For	instance:

1.	A	Web	Service	component	run-
ning	in	the	WEB	container	can	be	
accessed	from	a	client	program	
running	in	the	application	client	
container,	which	wasn’t	possible	in	
J2EE	1.3;

2.	A	Web	Service	component	hosted	in	

security

 Figure 1

JDJ.SYS-CON.com26 July 2006

the	EJB	container	can	be	reached	by	
an	external	non-Java	client	not	only	
via	the	CORBA	IIOP	protocol,	but	
also	using	the	lighter-weight	SOAP	
protocol;

3.	J2EE	components	can	now	use	four	
different	transports	for	inter-com-
ponent	communications:	1)	local	
invocations	in	the	same	JVM,	2)	
RMI-IIOP,	3)	RMI-JRMP,	or	4)	SOAP.

	 Let’s	look	at	the	ramifications	of	
these	changes	and	the	mandatory	
Web	Services	security-related	features	
supported	by	all	complaint	application	
servers.
	 The	ability	to	reach	an	application	
server	with	the	new	SOAP	protocol	im-
pacts	authentication	and	J2EE	requires	
that	the	following	two	authentication	
mechanisms	be	supported:

1.	HTTP	Basic	Authentication	and
2.	HTTPS	Mutual	Authentication,	

which	uses	the	certificate	presented	
by	a	Web	Service	endpoint	client	
during	a	SSL/TLS	handshake.

	 It’s	fairly	obvious	that	HTTP	Basic	
Authentication	provides	no	security	
unless	combined	with	HTTPS.	It’s	also	
apparent	that	with	these	two	choices	
authentication	occurs	in	the	transport,	
which	has	consequences	for	inter-
component	communication	that	I’ll	
discuss	later.
	 HTTPS	Mutual	Authentication	is	
a	very	viable	authentication	scheme.	
Unfortunately	we	learned	that	many	
applications	servers,	for	example,	

JBoss	and	WebSphere	(see	http://jira.
jboss.com/jira/browse/JBAS-3019),	
don’t	allow	one	to	check	the	client	
certificates	presented	during	SSL/TLS	
handshakes	against	the	CRLs	(Certifi-
cate	Revocation	Lists),	which	severely	
limits	the	security	of	this	authentica-
tion	method	in	large	public	enterprise	
applications.
	 To	achieve	integrity	and	confiden-
tiality	when	communicating	with	Web	
Service	endpoints,	J2EE	fully	supports	
SSL/TLS,	giving	it	the	same	level	of	
security	with	regard	to	integrity	and	
confidentiality	as		whencommunicat-
ing	via	RMI-IIOP	or	RMI-JRMP.
	 Using	SOAP	for	inter-component	
communication	in	J2EE	might	present	
some	surprises	since	no	client	security	
context	propagation	is	supported	
on	most	application	servers	(JBoss,	
WebSphere)	(http://jira.jboss.com/
jira/browse/JBWS-679	explains	the	
situation	in	JBoss).	
	 You	might	also	run	into	security	
breaches	similar	to	http://jira.jboss.
com/jira/browse/JBWS-675	—	a	secu-
rity	vulnerability	I	discovered	in	JBoss	
4.0.3	and	older	versions	that	enables	
you	to	create	a	J2EE	component	(an	
EJB	or	a	servlet)	that	would	send	the	
credentials	of	a	user	accessing	it	to	a	
non-authorized	party	whenever	the	
component	being	accessed	communi-
cates	via	SOAP	with	another	one.
	 For	J2EE	applications	generated	by	
our	OptimalJ	product,	we	decided	to	
simply	prohibit	our	users	from	model-
ing	inter-component	communica-
tions	via	the	Web	Service	endpoints,	

and	I	strongly	recommend	that	you	
don’t	use	Web	Service	endpoints	for	
this	purpose	either.	If	you	need	to	use	
SOAP	for	inter-component	invoca-
tions,	you’ll	have	to	explicitly	con-
figure		security	parameters	for	each	
{	invokingComp/invokingModule,	
invokedCompWithServiceEndpoint	}	
pair,	called	a	Web	Service	Reference,	in	
a	vendor-specific	deployment	descrip-
tor.
	 The	situation	with	single	sign-on	
isn’t	much	better.	Listing	2	shows	a	
piece	of	Java	EE	application	client	
code	that	accesses	a	Web	Service	end-
point.	The	code	does	the	same	thing	
as	Listing	1,	but	I	use	SOAP	instead	of	
IIOP	or	JRMP	to	reach	the	application	
server.
	 You	can	see	that	you	don’t	benefit	
from	JAAS	for	authentication	and	SSO,	
because	you	have	to	specify	the	au-
thentication	data	for	each	invocation.	
And	uncommenting	JAAS	login	state-
ments	would	be	futile	—	even	though	
it	will	create	a	login	session	with	the	
server	—	because	no	attempt	will	be	
made	to	put	the	established	creden-
tials	in	the	SOAP	messages	generated	
by	the	calls	to	the	enterprise	compo-
nents.	Fortunately	most	application	
servers	let	you	remove	authentication-
specific	data	from		your	code	and	put	
it	into	a	deployment	descriptor,	but	
that	still	falls	short	of	proper	SSO	sup-
port.	
	 Example	2	shows	you	a	piece	of	a	
JBoss	client	deployment	descriptor	
with	the	necessary	authentication	
data.	The	advantage	of	the	deployment	
descriptor	approach	is	that	it	enables	
you	to	specify	security	parameters	for	
each	{	invokingComp/invokingMod-
ule,	invokedCompWithServiceEnd-
point	}	pair	only	once	and	does	not	
needlessly	clutter	the	accompanying	
Java	code	for	each	invocation.

Example 2

<service-ref>

 <service-ref-name>

service/Bean1Service

 </service-ref-name>

 <port-component-ref>

 <service-endpoint-interface>

Bean1ServiceEndpoint

 </service-endpoint-interface>

 <call-property>

 <prop-name>

security

 Figure 2

JDJ.SYS-CON.com28 July 2006

javax.xml.rpc.security.auth.username

 </prop-name>

 <prop-value>Name</prop-value>

 </call-property>

 <call-property>

 <prop-name>

javax.xml.rpc.security.auth.password

 </prop-name>

 <prop-value>Passw</prop-value>

 </call-property>

 </port-component-ref>

</service-ref>

Security for Web Service Endpoints
— The Future
	 If	you’re	familiar	with	recent	devel-
opments	in	Web	Services	security	stan-
dards,	you	may	wonder	why	SSO	and	
security	context	propagation	are	still	a	
problem.	The	answer	is	simple.	When	
Java	EE	1.4	was	finalized	in	November	
of	2003	there	was	no	approved	WS	
specification	that	addressed	the	prob-
lem	of	security	context	propagation	
and	SSO	at	the	SOAP	message	level.	
The	OASIS	Web	Services	Security	(WS-
Security)	standard	was	then	in	draft,	
which	precluded	its	incorporation	in	
the	spec.	Since	then	WSS	has	become	
an	OASIS	standard	and	has	moved	
from	version	1.0	to	1.1.	Currently,	
the	standard	features	two	approved	
profiles,	each	of	which	allows	you	to	
achieve	SSO:	SAML	Token	Profile	and	
Kerberos	Token	Profile.	There	are	also	
two	new	non-OASIS	specifications	
that	potentially	address	this	problem:	
WS-Trust	and	WS-SecureConversa-
tion.	Both	are	currently	in	a	public	
draft	state	and	their	support	in	existing	
Java	EE	application	servers	is	largely	
absent.
	 It’s	logical	then	that	Java	2	Platform,	
Enterprise	Edition,	v5.0,	which	has	just	
been	blessed	by	the	Java	Community	
Process	executive	committee,	should	
offer	some	support	for	WS-Security	
to	address	the	problem	of	security	
context	propagation.	Surprisingly	Java	
EE	5.0	contains	almost	no	changes	in	
Web	Services	security	and	doesn’t	ad-
dress	the	problems	I	delineated	in	the	
previous	section.	
	 Fortunately	IBM,	BEA,	and	JBoss	
support	the	WS-Security	standard	in	
their	WebSphere	6.0.x,	WebLogic	9.1,	
and	JBoss	4.0.4.	WebLogic	even	uses	it	
for	security	context	propagation	and	
SSO	while	WebSphere	and	JBoss	limit	
themselves	to	authentication,	encryp-

tion,	and	digital	signing.
	 WebSphere,	WebLogic,	and	JBoss	
implement	version	1.0	of	the	WS-Secu-
rity	standard	and	support	the	follow-
ing	specifications:

•	 SOAP	Message	Security
•	 UsernameToken	Profile
•	 X.509	Certificate	Token	Profile

	 WebLogic	also	implements	the	
SAML	Token	Profile	so	it	can	offer	Web	
Services	SSO	and	a	security	context	
propagation	experience.
	 Beside	the	SSO	qualities	in	WebLog-
ic,	the	servers	achieve	the	following	
additional	security	characteristics	with	
the	help	of	WS-Security:

1.	Authentication	at	the	SOAP	message	
level	using	plaintext	name	pass-
words	and	X.509	Version	3	certifi-
cates;

2.	On	WebLogic,	authentication	at	the	
SOAP	message	level	using	SAML	
tokens;

3.	On	WebSphere,	authentication	at	
the	SOAP	message	level	using	LTPA	
tokens;

4.	Encryption	of	SOAP	messages	or	
parts	thereof	using	symmetric	
cryptography.	Secret	keys	can	be	
encrypted	and	put	in	messages	too.	
Essentially,	the	application	serv-
ers	support	most	of	the	required	
and	some	of	the	optional	encryp-
tion-related	algorithms	specified	
in	the	XML	Encryption	Syntax	and	
Processing	specification	that	the	
WS-Security	standard	builds	on.

5.	Digital	signing	and	verifying	SOAP	
messages	or	portions	thereof.	This	
is	an	important	item	because	it	
achieves	non-repudiation	—	some-
thing	that’s	not	possible	with	RMI-
IIOP-	and	RMI-JRMP-based	trans-
ports	and	wasn’t	possible	in	the	Java	
EE	security	model	in	the	past.	The	
application	servers	implement	most	
of	the	required	portions	of	the	XML-
Signature	Syntax	and	Processing	
specification,	which	also	underlies	
the	WS-Security	standard.

6.	Means	of	defeating	replay	attacks	
by	using	nonces	and	timestamps	in	
SOAP	headers.

	 As	I	mentioned	earlier,	Java	EE	v	
1.4/5.0	is	silent	on	the	subject	of	the	

WS-Security	standard.	One	unpleas-
ant	consequence	of	that	silence	is	that	
you	need	to	use	container-specific	
deployment	descriptors	to	specify	all	
the	WS-Security	related	information	in	
your	application,	which	obviously	limits	
the	portability	of	your	application.	We-
bLogic	is	an	interesting	exception.	BEA	
chose	to	adopt	WS-Policy	as	a	standard	
means	of	specifying	WS-Security-re-
lated	configuration	of	its	Web	Service	
endpoints	(Microsoft	has	done	the	same	
thing	in	its	.NET	Framework.)	And	JBoss	
is	moving	toward	embracing	WS-Policy	
(see	http://jira.jboss.com/jira/browse/
JBWS-856	for	more	information).
	 The	lack	of	WS-Security	support	in	
Java	EE	1.4/5.0	means	that	Sun	Mi-
crosystem’s	technology	conformance	
kits	for	Java	EE	(which	an	application	
server	must	pass	for	it	to	be	declared	
compliant)	exclude	any	related	testing	
and	so	vendors	can	deviate	from	one	
another	in	their	WS-Security	im-
plemetations.	
	 As	is	the	case	with	most	crucial	
Web	services	specifications,	the	WS-I	
Consortium	(the	producer	of	the	Basic	
Profile	–	a	specification	that	ensures	
interoperability	among	Web	service	
components	today)	–	is	defining	a	
subset	of	the	WS-Security	standard	
and	its	constituent	specifications	that	
all	the	vendors	will	have	to	support	in	
the	same	way.	This	effort	is	known	as	
the	Basic	Security	Profile	and	is	now	in	
draft.	Until	it’s	completed	and	all	the	
vendors	have	incorporated	it	in	their	
products,	interoperability	issues	are	
inevitable	(largely	because	of	the	ex-
tensiveness	the	WS-Security	standard	
and	the	plethora	of	decisions	that	a	
vendor	has	to	make	when	implement-
ing	it).	(The	following	article	will	give	
you	an	idea	of	what	problems	you	
might	run	into	if	you	use	products	
from	different	vendors:	http://www-
128.ibm.com/developerworks/web-
services/library/ws-was-net/index.
html?ca=drs-%20
%20%20%20%20%20%
20%20%20%20%20%
20%20%20%20Articles.)

Conclusion
	 Clearly	the	new	Web	Services	object	
distributed	model	in	Java	Enterprise	
Edition	1.4/5.0	could	supplant	RMI-IIOP	
and	RMI-JRMP	in	Enterprise	Java	as	the	

29July 2006JDJ.SYS-CON.com

object	distribution	protocol	that	offers	
the	same	or	better	security	services.	At	
the	moment,	however,	the	level	of	sup-
port	that	the	Java	Enterprise	Edition	v.	
1.4/5.0	specification	required	is	clearly	
insufficient	for	that	to	happen	over	night.	
Still,	given	the	current	industry	trends	
and	with	more	and	more	vendors	com-
mitting	themselves	to	WS-Security	and	
its	Basic	Security	Profile	counterpart,	it	is	
more	a	question	of	when	than	if.	
	 The	fact	that	support	for	WS-I	Basic	
Security	Profile	isn’t	prevalent	yet	in	
Java	EE	applications	servers	and	that	
the	profile	is	still	subject	to	change	has		
consequences	for	those	who	develop	
portable	Java	EE	applications.	If	the	
portability	of	your	application	is	a	con-
cern,	you’d	be	better	off	limiting	yourself	
to	the	guaranteed	Java	EE	1.4/5.0	Web	
Services	security	features	and	avoiding	
WS-Security	for	a	time	being.	This	is	the	
approach	we	took	in	our	forthcoming	
OptimalJ	product	since	we	needed	to	
shield	our	users	from	the	specifics	of	any	
particular	vendor	implementations.

References
•	 Moving	to	SOA	in	J2EE	1.4:	http://

java.sys-con.com/read/180362.htm
•	 Java	2	Platform	Enterprise	Edition	

Specification,	v1.4:	http://java.sun.
com/j2ee/j2ee-1_4-fr-spec.pdf

•	 Java	2	Platform,	Enterprise	Edition,	
v5.0:	http://jcp.org/aboutJava/com-
munityprocess/pr/jsr244/

•	 The	SSL	Protocol,	Version	3.0:	
http://home.netscape.com/eng/
ssl3/draft302.txt

•	 RFC	2246:	The	TLS	Protocol,	Version	
1.0:	http://www.ietf.org/rfc/rfc2246.
txt

•	 RFC	2459:	Internet	X.509	Public	Key	
Infrastructure,	Certificate	and	CRL	
Profile:	http://www.ietf.org/rfc/
rfc2459.txt

•	 RFC	2712:	The	Addition	of	Kerberos	
Cipher	Suites	to	Transport	Layer	
Security	(TLS):	http://www.ietf.org/
rfc/rfc2712.txt

•	 RFC	2945:	The	SRP	Authentication	
and	Key	Exchange	System:	http://
www.ietf.org/rfc/rfc2945.txt

•	 Making	Login	Services	Independent	
of	Authentication	Technologies:	
http://java.sun.com/security/jaas/
doc/pam.html

•	 JAAS	in	the	Enterprise:	http://jdj.
sys-con.com/read/171477.htm

•	 Common	Secure	Interoperability,	
Version	2:	http://www.omg.org/
technology/documents/formal/

omg_security.htm#CSIv2
•	 Certificate	and	Certificate	

Revocation	List	(CRL)	Profile:	
http://www.ietf.org/rfc/rfc3280.txt

•	 OASIS	Web	Services	Security	
(WSS):	http://www.oasis-open.
org/committees/tc_home.php?wg_
abbrev=wss

•	 Web	Services	Trust	Language	(WS-
Trust):	ftp://www6.software.ibm.
com/software/developer/library/
ws-trust.pdf

•	 Web	Services	Secure	
Conversation	Language	(WS-
SecureConversation):	ftp://www6.
software.ibm.com/software/devel-
oper/library/ws-secureconversa-
tion.pdf

•	 XML	Encryption	Syntax	and	
Processing:	http://www.w3.org/TR/
xmlenc-core/

•	 XML-Signature	Syntax	and	
Processing:	http://www.w3.org/TR/
xmldsig-core/

•	 Web	Services	Policy	Framework	
(WSPolicy):	http://specs.xmlsoap.
org/ws/2004/09/policy/ws-policy.
pdf

•	 Basic	Security	Profile:	http://www.
ws-i.org/deliverables/working-
group.aspx?wg=basicsecurity		

security

Listing 1
final static InitialContext iniCtx = new InitialContext();
// Will prompt the user for a name and credentials
// using a GUI dialog box.
CallbackHandler handler = new WSGUICallbackHandlerImpl();
LoginContext logCtx = new LoginContext(“WSLogin”, handler);

// Single signon allows to access the container without
// needing to reauthenticate.
logCtx.login();
Subject subject = logCtx.getSubject();

PrivilegedAction bean1Action = new PrivilegedAction() {
public Object run() {
 try {
 Object homeProxy = iniCtx.lookup(“ejb/bean1”);
 Bean1Home bean1Home = (Bean1Home)
 PortableRemoteObject.narrow(homeProxy, Bean1Home.
class);
 Bean1Remote bean1 = helloHome.create();
 bean1.businessMethod1(...);
 ...
 }
 catch (CreateException ce) { ... }
 catch (RemoteException re) { ... }
}
};
PrivilegedAction bean2Action = new PrivilegedAction() { ... }

// Access components in the application server on behalf of ‘sub-
ject’
com.ibm.websphere.security.auth.WSSubject.doAs(subject, bean1Ac-
tion);
com.ibm.websphere.security.auth.WSSubject.doAs(subject, bean2Ac-
tion);

// End the logon session.
logCtx.logout();

Listing 2
InitialContext iniCtx = new InitialContext();
// No use logging in, authentication will occur in the transport
// anyway and no effort to propagate credentials established in
// the lines commented out below will be made!
//
// UsernamePasswordHandler handler =
// new UsernamePasswordHandler(username, password);
// LoginContext logCtx =
// new LoginContext(“client-login-module-name”, handler);
// logCtx.login();

Service srv = (javax.xml.rpc.Service)
 iniCtx.lookup(“java:comp/env/service/Bean1Service”);
Bean1ServiceEndpoint bean1Stub = (Bean1ServiceEndpoint)
 srv.getPort(Bean1ServiceEndpoint.class);

// Can use either 1) Java EE standard stub properties to specify
// authentication data for HTTP Basic Authentication, or
// 2) Vendor specific extensions to specify a cerificate
// for HTTPS Mutual Authentication

Stub stub = (Stub) port;

// Portable code for HTTP Basic Authentication.
stub._setProperty(“javax.xml.rpc.security.auth.username”, “Name”);
stub._setProperty(“javax.xml.rpc.security.auth.password”,
“Password”);

// JBoss specific code for HTTPS Mutual Authentication.
// stub._setProperty(“org.jboss.webservice.keyStore”, keyStore);
// stub._setProperty(“org.jboss.webservice.keyStorePassword”,
// “keyStorePassword”);
// stub._setProperty(“org.jboss.webservice.keyStoreType”, “JKS”);
// stub._setProperty(“org.jboss.webservice.trustStore”, trust-
Store);
// stub._setProperty(“org.jboss.webservice.trustStorePassword”,
// “trustStorePassword”);
// stub._setProperty(“org.jboss.webservice.trustStoreType”, “JKS”);

bean1Stub.businessMethod1(...);
...
// End the logon session.
// logCtx.logout();

JDJ.SYS-CON.com30 July 2006

The Flex® Logo is a Trademark of Adobe Systems Inc. ©Copyright 2006. All Right Reserved

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓
✓
✓
✓

pplication	security	—	the	art	
of	applications	defending	
themselves	—	represents	an	
important	line	of	defence	in	
an	overall	in-depth	security	

strategy.	Web	applications	that	follow	
the	Model-View-Controller	(MVC)	
architecture	can,	and	should,	have	se-
curity	implemented	on	all	three	layers.	
Normally	it’s	the	controller	component	
that	handles	page	authorization	in	
MVC,	the	view	layer	that	hides	controls	
and	information	based	on	user	autho-
rization,	and	the	model	that	enforces	
the	business	rules	and	input	valida-
tion.	However,	it’s	up	to	the	developer,	
based	on	an	individual	security	policy	
and	the	programming	technology	
used,	to	decide	where	to	put	security.	
Using	pluggable	validator	components	
in	JavaServer	Faces	(JSF),	for	example,	
developers	may	decide	to	verify	user	
input	on	the	view	layer	as	well	as	on	
the	model	layer.
	 JavaServer	Faces,	the	new	J2EE	
standard	for	building	feature-rich	
Web	applications	with	JEE	1.5,	has	
few	integrated	security	features.	JSF	
generously	delegates	the	task	of	imple-
menting	application	security	such	as	
page	authorization	to	the	application	
developer,	leaving	many	developers	
pondering	where	to	start,	where	best	
to	put	security,	and	which	security	
technology	to	choose.	
	 This	article	aims	to	answer	such	
questions	for	authorization	in	Ja-
vaServer	Faces,	demonstrating	how	a	
custom	PhaseListener	that	uses	J2EE	
container-managed	security	can	be	
used	to	implement	access	control	for	
JSF	pages.	Besides	page	authorization,	
the	security	PhaseListener	supports	
protocol	switching	between	HTTP	and	
HTTPS,	a	common	requirement	of	
applications	that	work	with	sensitive	
data	on	a	Web	page.	

The J2EE Security Choices
	 The	J2EE	platform	provides	two	
built-in	security	technologies	for	the	

application	developer	to	use:	the	Java	
Authentication	and	Authorization	
Service	(JAAS)	and	container-managed	
security,	also	known	as	J2EE	security.
	 The	Java	Authentication	and	Autho-
rization	Service	is	a	J2SE	1.4	security	
standard	designed	for	the	Java	desktop	
that’s	also	used	as	an	implementation	
technology	for	security	in	J2EE.	The	
JAAS	authentication	infrastructure	is	
built	as	a	Java	version	of	the	Plug-
gable	Authentication	Module	(PAM)	
architecture	that	allows	one	or	more	
authentication	providers	to	be	used	
for	user	identification.	Before	JAAS,	the	
Java	2	security	platform	was	code-
centric,	determining	access	privileges	
based	solely	on	the	location	of	the	
Java	sources.	Using	JAAS,	Java	security	
now	also	looks	at	the	authenticated	
user	when	evaluating	access	control	to	
resources.	JAAS’s	benefit	is	its	ability	to	
implement	fine-grained	access	control	
through	external	Java	permission	
classes,	which	associate	users	with	a	
list	of	resources	and	allowed	actions.	
	 Authentication	and	authorization	in	
J2EE	security	is	configured	declara-
tively	in	the	application’s	web.xml	
deployment	descriptor	and	handled	by	
the	J2EE	container	at	runtime.	Working	
with	APIs	defined	in	the	J2EE	servlet	
standard,	application	developers	don’t	
have	to	worry	about	the	implemen-
tation	of	security	in	a	container.	In	
container-managed	security,	autho-
rization	is	enforced	on	URL	patterns,	
which	are	absolute	or	relative	URLs.	
This	however	also	means	that	autho-
rization	is	only	enforced	on	requests	
that	are	initiated	by	the	client,	not	as	
server-side	forward	requests.
	 Ease	of	use,	the	clean	separation	
of	security	definition	and	application	
code,	and	portability	across	applica-
tion	servers	are	the	main	reasons	
for	the	wide	adoption	of	container-
managed	security	among	business	
application	developers.	J2EE	security	
is	sufficient	to	implement	many	com-
mon	security	use	cases.	As	a	reflection	

of	its	popularity	and	its	portability,	
container-managed	security	is	used	
in	the	code	examples	of	this	article	to	
illustrate	effective	page	authorization	
in	JavaServer	Faces.

Container-Managed Security in J2EE
	 In	container-managed	security,	a	
user	is	granted	access	to	protected	
URL	resources	through	security	roles	
defined	in	the	web.xml	deployment	
descriptor.	Security	roles	in	J2EE	are	
logical	names	used	in	Web	applications	
that	are	mapped	during	or	after	deploy-
ment	to	user	groups	that	exist	on	the	
target	application	server	platform.

Listing 1 Web.xml excerpt granting the app_user security

role access to the protected URL resource /faces/pro-

tected/*

<security-constraint>

 <Web-resource-collection>

 <Web-resource-name>Members</Web-

resource-name>

 <url-pattern>/faces/protected/*</url-

pattern>

 </Web-resource-collection>

 <auth-constraint>

 <role-name>app_user</role-name>

 </auth-constraint>

</security-constraint>

...

<security-role>

 <role-name>app_user</role-name>

</security-role>

	 To	access	a	protected	application	
resource,	Web	application	users	must	
first	authenticate,	which	in	container-
managed	security	is	handled	by	the	
J2EE	container.	Either	the	application	
developer	or	the	application	deployer	
configures	the	type	of	authentication	
in	the	web.xml	deployment	descriptor.

Listing 2 Basic authentication defined for the jazn.com

realm

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>jazn.com</realm-name>

</login-config>

JsF

Frank Nimphius

By Invitation Only!

A
Effective page authorization in JavaServer Faces Duncan Mills

Frank Nimphius is

a principal product

manager for application

development tools at

Oracle Corporation. As

a conference speaker,

Frank represents the

Oracle J2EE develop-

ment team at J2EE

conferences world

wide, including various

Oracle user groups and

the Oracle Open World

conference.

Duncan Mills is a

Java evangelist and

product manager at

Oracle Corporation.

He’s been working in

the IT industry for the

last 17 years in various

development and DBA

roles and now works on

the team responsible for

the JDeveloper IDE. You

can follow Duncan’s life

on the GroundBlog at

http://www.groundside.

com/blog.

JDJ.SYS-CON.com32 July 2006

	 To	check	authorization	program-
matically	in	an	J2EE	application	–	like	
in	JavaServer	Faces	–	application	de-
velopers	use	the	isUserInRole	method	
in	the	servlet	API.	This	isUserInRole	
method	is	also	exposed	via	a	conve-
nience	method	in	JavaServer	Faces	
through	the	static	FacesContext	class.	
Role	names	referenced	in	application	
code	ought	to	be	mapped	to	roles	
defined	in	the	web.xml	file	using	the	
<security-role-ref>	element	if	the	role	
names	don’t	match.	Using	the	<se-
curity-role-ref>	element,	developers	
don’t	have	to	be	aware	of	the	security	
role	names	that	exist	in	the	web.xml	
descriptor	when	developing	an	ap-
plication.

Listing 3 Mapping the “user” role name used in the appli-

cation code to the security role name “manager_role”

defined in the web.xml file

<security-role-ref>

 <role-name>user</role-name>

 <role-link>app_user</role-link>

</security-role-ref>

	 If	the	authenticated	user	isn’t	au-
thorized	to	access	the	requested	URL	
resource,	the	J2EE	container	responds	
with	HTTP	error	403,	indicating	a	bad	
request.	A	HTTP	error	401	is	returned	
if	a	user	cancels	the	authentication	
process.	HTTP	error	codes	and	Java	
exceptions	are	handled	declaratively	
in	the	web.xml	file	using	the	<error-
page>	element.	

Listing 4 Redirecting a request in response to unauthor-

ized page access handling error code 403 and 401

<error-page>
 <error-code>403</error-code>

 <location>Error.jsp</location>

</error-page>

<error-page>

 <error-code>401</error-code>

 <location>Logon_cancelled.jsp</location>

</error-page>

	 If	SSL	is	required	to	ensure	secure	
communication	when	accessing	a	spe-
cific	Web	resource,	the	<security-con-
straint>	element	added	for	a	protected	
resource	contains	an	additional	<user-
data-constraint>	element.	Setting	the	
transport	guarantee	to	“confidential”	
indicates	that	SSL	is	required.	

Listing 5 Indicating that a Web resource requires SSL

<user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</

transport-guarantee>

</user-data-constraint>

	 Though	J2EE	Web	resources	can	
be	configured	to	require	HTTPS	this	
way,	the	J2EE	specification	doesn’t	
demand	that	Web	containers	respond	
by	automatically	switching	protocols.	
Instead,	J2EE	containers	usually	return	
an	HTTP	error	message	to	indicate	a	
failed	user	request.	Individual	J2EE	
containers	like	Apache	Tomcat	provide	
native	support	for	switching	between	
the	HTTP	and	HTTPS	protocol.	How-
ever,	you	ought	to	be	aware	that	such	
solutions	aren’t	portable	to	other	J2EE	
containers.	

Page Navigation in JavaServer Faces
	 So	we’ve	seen	how	basic	con-
tainer-managed	security	is	configured	
through	the	use	of	
logical	application	
roles	protecting	a	URL	
pattern.	Now	let’s	look	
at	how	JSF	manages	
page	navigation	and	
how	the	principles	of	
container-managed	
security	can	be	ap-
plied.
	 Page	navigation	in	
JavaServer	Faces	is	
defined	in	the	WEB-
INF\faces-config.xml	
file,	where	the	JSF	
NavigationHandler	
component	uses	it.	
	 The	application	
developer	configures	
navigation	in	JSF	
either	as	a	server-
side	forward	or,	if	the	
<redirect/>	element	is	
included	in	the	naviga-
tion	case,	as	a	browser	
redirect.

Listing 6 JSF navigation case issuing a redirect request for

page navigation

<navigation-case>

 <from-outcome>success</from-outcome>

 <to-view-id>/Departments.jsp</to-view-

id>

 <redirect/>

</navigation-case>

	 Server-side	forwards	are	the	de	facto	
default	implementation	of	naviga-
tion	cases	in	JSF,	but	such	navigation	
harbors	two	side	effects:	first,	the	URL	
won’t	change,	and	so	pages	in	the	
application	aren’t	bookmarkable;	and	
secondly,	there’s	no	new	submission	of	
a	URL	pattern	for	container-managed	
security	to	be	applied	to.	As	a	conse-

quence,	if	you’ve	implemented	con-
tainer-managed	security,	you’ll	have	
to	use	<redirect/>	explicitly	on	any	
navigation	cases	that	have	to	trigger	a	
security	check	across	role	boundaries.
	 It	should	be	clear	by	now	that	
authorizing	pages	and	implementing	
a	secure	channel	for	communica-
tion	isn’t	easy	to	achieve	in	JavaSer-
ver	Faces.	And	using	JAAS	instead	of	
container-managed	security	offers	
no	better	solution.	The	answer	lies	
in	a	combined	approach:	a	reusable	
custom	security	implementation	
specifically	designed	to	work	with	JSF	
based	on	JAAS	or	container-managed	
J2EE	security.

Where Does Security Belong in
JavaServer Faces?
	 As	we’ve	mentioned,	JSF	has	no	
real	security	infrastructure	built	into	
it	and	this	leaves	the	developer	to	
wonder	where	and	how	to	implement	
security.	The	examples	that	address	
user	authentication	in	JSF	(using	JAAS,	
for	instance)	don’t	cover	the	important	
task	of	page	authorization.
	 The	authorization	enforcer	security	
pattern	demands	that	authorization	
be	handled	in	a	central	location.	For	
many	Web	applications,	this	central	lo-
cation	is	a	ServletFilter	associated	with	
the	application	front	controller.	In	JSF,	
though,	security	is	best	implemented	
using	the	built-in	extension	points	
provided	by	the	JavaServer	Faces	
architecture.	

 Figure 1 Security PhaseListener sequence

33July 2006JDJ.SYS-CON.com

	 The	two	candidate	approaches	for	
implementing	security	in	JSF	are:	

•	 A	custom	ViewHandler	that	deco-
rates	the	default	ViewHandler	and	
also	adds	security	checks	to	the	cre-
ateView	and	restoreView	methods

•	 A	PhaseListener	that	adds	security	
evaluation	to	the	restoreView	and	
invokeAction	phases

	 Adding	security	to	a	Viewhandler	
doesn’t	appear	to	be	an	ideal	solution	
because	there’s	no	guarantee	that	a	
security	ViewHandler	will	be	executed	
before	any	other	custom	ViewHan-
dlers	that	have	been	registered.	If	
another	ViewHandler	is	present	and	
writing	to	the	servlet	response	stream	
then	security-related	actions	such	as	
redirecting	a	request	to	the	HTTPS	
port	would	result	in	illegal	state	
exceptions.	So	it	seems	that	a	custom	
PhaseListener	is	the	better	approach	
to	adopt.

Developing a JavaServer Faces
PhaseListener for Security
	 JavaServer	Faces	executes	in	a	
rich	request	lifecycle	composed	of	a	
sequence	of	individual	phase	events:	
Restore	View,	Apply	Request	Values,	
Process	Validation,	Update	Model	Val-
ues,	Invoke	Application,	and	Render	
Response.	PhaseListeners	in	JavaSer-
ver	Faces	are	Java	classes	configured	in	
the	faces-config.xml	file	and	notified	
when	a	specific	phase	event	of	interest	
occurs.	

	 To	execute	custom	logic	before	and	
after	a	specific	event,	custom	applica-
tion	code	is	added	to	the	beforePhase	
and	afterPhase	methods	of	a	PhaseL-
istener.	Both	methods	accept	an	input	
argument	of	a	PhaseEvent	to	provide	
information	about	the	calling	phase,	
for	example,	a	phase	ID.	The	third	
method	developers	have	to	implement	
is	getPhaseId.	The	getPhaseId	method	
is	used	to	declare	which	phases	the	
listener	is	actually	interested	in	being	
notified	about.

Listing 7 Custom PhaseListener listening to any event and

implementing the JSf PhaseListener interface

public class J2EESecurityPhaseListener

implements PhaseListener

{

 public SecurityPhaseListener() { }

 public void afterPhase(PhaseEvent phas-

eEvent) { }

 public void beforePhase(PhaseEvent phas-

eEvent){ }

 public PhaseId getPhaseId() {return

PhaseId.ANY_PHASE;}

}

	 An	application	can	have	more	
than	one	PhaseListener	configured.	
PhaseListeners	are	configured	in	the	
<lifecycle>	element	of	the	faces-config.
xml	configuration	file.	

Listing 8 PhaseListener configuration in faces-config.xml

<lifecycle>

 <phase-listener>

 com.groundside.jsf.J2EESecurityP

haseListener

 </phase-listener>

</lifecycle>

	 Java	IDEs	like	Oracle	JDeveloper	
provide	visual	editors	to	simplify	this	
configuration	of	the	faces-config.xml	
file.	

A J2EE security PhaseListener —
 J2EESecurityPhaseListener
	 The	J2EESecurityPhaseListener	is	
a	custom	PhaseListener	that	imple-
ments	page	authorization	for	the	JSF	
restoreView	and	invokeAction	phases	
using	container-managed	J2EE	secu-
rity	roles.	JSF	doesn’t	let	PhaseListener	
register	for	multiple	selected	events.	
Either	a	PhaseListener	registers	for	
one	specific	event	or	it	registers	for	all	
events.	So	the	J2EESecurityPhaseLis-
tener	listener	is	registered	to	listen	to	
any	phase,	but	responds	only	to	the	
RESTORE_VIEW	and	INVOKE_APPLI-
CATION	phases.

Listing 9 The J2EESecurityPhaseListener listens to any

event but responds to RestoreView and InvokeApplication

only

public void afterPhase(PhaseEvent phas-

eEvent)

 {

 PhaseId phaseid = phaseEvent.getPha-

seId();

 if (phaseid == PhaseId.RESTORE_VIEW||

 phaseid == PhaseId.INVOKE_

APPLICATION)

 { … }

}

JsF

 Figure 2 XML schema of the faces-security-config.xml file

JDJ.SYS-CON.com34 July 2006

	 The	J2EESecurityPhaseListener	uses	
an	extra	XML	configuration	file,	faces-
security-config.xml,	to	define	JSF	pages	
that	require	authentication,	authoriza-
tion,	or	secure	communication	with	
SSL.	The	faces-security-config.xml	file	is	
located	in	the	WEB-INF	directory	like	the	
JavaServer	Faces	faces-config.xml	file.	
	 The	security	PhaseListener	parses	
the	faces-security-config.xml	file	with	
the	Apache	Digester	[DIGESTER]	to	
create	a	Java	security	object	that	is	
subsequently	cached	in	the	ap-
plication	scope.	The	security	object	
contains	security	information	about	
the	configured	HTTP	and	HTTPS	
ports,	whether	or	not	to	keep	SSL	after	
it’s	used	the	first	time,	and	individual	
authentication,	authorization,	and	SSL	
requirements	for	each	page.	
	 The	PhaseListener	determines	page	
authorization	only	once	per	session	
for	each	JSF	page	(viewId)	that	a	user	
requests.	At	successful	authorization,	a	
reference	to	the	JSF	page	is	cached	in	the	
session	to	improve	performance	on	sub-
sequent	requests	for	the	same	resource.	
	 A	user	who	requests	a	protected	
page	without	first	having	been	authen-
ticated	is	redirected	to	an	authen-
tication	servlet.	The	authentication	
servlet	is	configured	in	the	web.xml	
deployment	descriptor	and	protected	
by	a	J2EE	security	role	that	all	users	are	
members	of.	All	JSF	pages	configured	
in	the	faces-security-comfig.xml	file	to	
require	authorization	implicitly	also	
require	authentication.	If	an	unau-
thenticated	user	tries	to	access	a	page	
that	requires	SSL,	a	container-man-
aged	logon	form	is	launched	over	
HTTPS.
	 The	faces-security-config.xml	file	
consists	of	two	parts:
•	 A	global	configuration	section	to	

provide	HTTP	and	HTTPS	port	
information	and	whether	SSL	com-
munication	should	be	kept	once	
established.	The	keep-SSL-mode	
information	overrides	the	individual	
page	configuration	for	SSL.

•	 Multiple	jsf-page	elements	to	con-
figure	page	and	directory	authoriza-
tion.	The	page	is	identified	by	its	
viewId,	which	starts	with	a	leading	
slash	followed	by	the	relative	URI,	
not	excluding	the	faces	virtual	map-
ping	(for	example,	/protected/main.
jsp).	Directory	names	are	indicated	
by	an	appended	wildcard	character	

‘*’	(for	example,	/protected/*).	

	 For	each	protected	page	or	directory,	
the	developer	defines	the	authentica-
tion,	authorization,	and	SSL	require-
ments.	If	a	page	requires	SSL,	but	the	
current	request	protocol	is	HTTP,	the	
J2EESecurityPhaseListener	redirects	
the	request	to	a	configured	HTTPS	port.	
Similarly,	if	the	protocol	is	currently	
HTTPS	but	the	page	doesn’t	require	a	
secure	channel	and	the	keep-ssl-mode	
is	set	to	false,	the	PhaseListener	redi-
rects	the	request	to	the	HTTP	port.
	 JSF	pages	and	directories	that	re-
quire	authorization	have	to	reference	
the	name	of	one	or	more	J2EE	security	
roles	defined	in	the	web.xml	file.	The	
role-concatenation	attribute	lets	
developers	specify	whether	a	user	has	
to	be	a	member	of	all	the	configured	
roles	(AND)	or	only	a	single	role	(OR).
	 Because	the	security	configurations	
are	stored	in	an	XML	file,	the	page	
authentication	strategy	and	the	autho-
rization	definitions	can	be	changed	
at	any	time	without	recompiling	or	
redeploying	the	application.
	 To	use	the	J2EESecurityPhaseL-
istener	in	custom	JSF	applications,	
developers	do	the	following
•	 Deploy	the	jsfj2ee-security-util.jar	

file	as	a	library	with	the	application.	
•	 Create	and	configure	the	faces-

security-config.xml	file	in	the	appli-
cation	WEB-INF	directory.

•	 For	protocol	switching,	configure	
the	HTTP	and	HTTPS	ports	and	
ensure	that	the	application	server	
is	set	up	to	share	a	session	between	
the	two	ports.

•	 Configure	the	authentication	servlet	
in	the	web.xml	file.

•	 Configure	container-managed	
authentication	and	J2EE	security	
roles	in	the	web.xml	file.

	 Once	set	up,	the	J2EESecurity-
PhaseListener	lets	developers	apply	
authorization	to	any	JSF	page	naviga-
tion	–	a	forward	or	a	redirect	–	while	
still	using	standard	container	mecha-
nisms	to	handle	authentication	and	
role	definition.
	 To	improve	default	container-man-
aged	security,	the	J2EESecurityPhaseL-
istener	also	lets	developers	configure	
page	authorizations	that	use	multiple	
J2EE	roles,	rather	than	having	to	define	
multiple	roles	to	achieve	fine-grained	

authorization	in	conventional	contain-
er-managed	security.	

Completing the Page Authorization
Picture with a Custom Property
Resolver
	 The	“limited	view”	security	design	
pattern	defines	what	users	can	view	
and	access	and	lets	them	access	ac-
cordingly.	Protecting	a	page	from	unau-
thorized	access	alone	isn’t	enough.	UI	
components	that	initiate	page	naviga-
tion	should	be	hidden	if	the	user	is	not	
allowed	access	the	navigation	target.	To	
set	a	component’s	rendered	property	
to	false,	expression	language	(EL)	can	
be	used.	The	EL	can	be	sourced	from	
handcrafted	managed	beans	defined	as	
part	of	the	application	or	more	generi-
cally	through	a	security-aware	custom	
variable	resolver.	A	sample	resolver	of	
this	type	is	available	for	download	at	
jsf-security.sourceforge.net.

Summary
	 Without	a	doubt,	JavaServer	Faces	is	
a	great	step	forward	for	J2EE	applica-
tion	development.	Application	security	
is,	however,	an	important	component	
in	the	development	lifecycle	and,	
unfortunately,	this	is	where	the	current	
JavaServer	Faces	specification	falls	
short.	In	the	future,	we	would	hope	
and	expect	that	security	integration,	
perhaps	of	a	nature	similar	to	that	dis-
cussed	in	this	article	and	the	associated	
code,	will	be	added	to	the	specification.	
	 The	custom	J2EESecurityPhase-	
Listener	developed	for	this	article	
uses	container-managed	security	for	
the	sake	of	simplicity,	but	it	can	be	
adapted	to	use	either	JAAS	or	a	custom	
security	provider.	The	source	code	for	
this	PhaseListener	based	solution	can	
be	downloaded	with	this	article.	

References
•	 E.	Burns,	C.	Schalk.	JavaServer

Faces: The Complete Reference.	ISBN	
0072262400

•	 D.	Alur,	J.	Crupi,	and	D.	Malks.	Core
J2EE Patterns: Best Practices and
Design Strategies.	2d	ed.	ISBN	0-13-
142246-4	

•	 http://jsf-security.sourceforge.net/	
•	 DIGESTER:	http://jakarta.apache.

org/commons/digester/		

JDJ.SYS-CON.com36 July 2006

he	WebLogic-Eclipse	plug-in	
is	designed	to	run	the	Web-
Logic	Server	from	the	Eclipse	
IDE.	With	the	WebLogic-
Eclipse	plug-in,	the	WebLog-

ic	Server	gets	started	and	stopped	
from	Eclipse.	An	application	
deployed	in	the	WebLogic	Server	can	
be	debugged	from	Eclipse	with	the	
plug-in.	By	installing	the	WebLogic	
plug-in	in	Eclipse	the	WebLogic	
Server	can	be	configured	and	ad-
ministered	from	the	Eclipse	IDE	by	
setting	the	server	classpath	and	JVM	
options	in	Eclipse.

Overview
	 A	J2EE	developer	is	commonly	
required	to	administer	the	Web-
Logic	Server	and	debug	applications	
deployed	in	the	WebLogic	Server.	
While	the	WebLogic	Server	adminis-
tration	console	can	start	and	stop	the	
WebLogic	Server,	the	administration	
console	doesn’t	provide	for	setting	the	
JVM	options	and	the	server	classpath.	
The	JVM	options	and	server	classpath	
have	to	be	set	in	the	startWebLogic	
script.	And	to	debug	an	application	
deployed	in	the	WebLogic	Server,	an	
IDE	with	a	remote	debugger	is	needed.	
With	the	WebLogic	plug-in	the	Web-
Logic	Server	can	be	administered	from	
the	Eclipse	IDE.	In	this	tutorial	we’ll	
develop	a	J2EE	application	consisting	
of	a	Session	EJB	and	a	servlet,	deploy	
the	application	in	the	WebLogic	Server	
from	the	Eclipse	IDE,	and	debug	the	
application	in	Eclipse.

Preliminary Setup
•	 Download and install the Eclipse

3.0 IDE: www.eclipse.org
•	 Download and install the WebLogic

8.1 Server:	www.bea.com/frame-
work.jsp?CNT=index.htm&FP=/
content/products/weblogic/server

Installing the WebLogic-Eclipse
Plug-in
	 Now	we’ll	install	the	WebLogic-
Eclipse	IDE.	In	the	Eclipse	IDE	select	
Help>Software	Updates>Find	and	
Install.	The	Install/Update	frame	
gets	displayed.	Select	Search	for	new	
features	to	install	and	click	on	the	
Next	button.	The	Install	frame	gets	
displayed.	Click	on	the	New	Remote	
Site	button	to	specify	an	update	Web	
site	from	which	to	install	a	plug-in.	In	
the	New	Update	Site	frame	specify	a	
name	and	the	URL	from	which	the	We-
bLogic-Eclipse	plug-in	is	installed.	The	
URL	for	the	WebLogic-Eclipse	plug-in	
is	https://eclipse-plug-in.projects.
dev2dev.bea.com/update.	An	update	
site	configuration	gets	added.	Select	
the	checkbox	for	EclipseWebLogic	for	
“Sites	to	include	in	search”	and	click	
on	the	Next	button.	In	the	features	
to	install	frame	select	the	WebLogic-
Eclipse	Feature	and	click	on	the	Next	
button.
	 Select	the	license	terms	and	click	on	
the	Next	button.	In	the	Install	location	
frame	the	directory	in	which	the	Web-
Logic-Eclipse	plug-in	will	be	installed	
is	specified.	Click	the	Finish	button	
to	complete	the	configuration	of	the	
WebLogic	plug-in.	The	JAR	Verification	
frame	is	displayed.	Click	the	Install	
button	to	install	the	WebLogic-Eclipse	
plug-in.	Restart	the	Eclipse	workbench	
for	the	plug-in	to	get	installed.	The	We-
bLogic-Eclipse	plug-in	gets	installed	in	
the	Eclipse	IDE.	The	Run>Start	Web-
Logic	and	Run>Stop	WebLogic	features	
get	added	to	Eclipse.

Configuring the WebLogic-Eclipse
Plug-in
	 After	installing	the	WebLogic-
Eclipse	plug-in	we’ll	configure	the	
plug-in	in	the	Eclipse	IDE.	First,	create	
a	project	with	which	the	WebLogic	

plug-in	is	to	be	configured.	Select	
File>New>Project.	In	the	New	Project	
frame	select	Java>Java	Project	and	
click	the	Next	button.	In	the	Create	a	
Java	project	frame	specify	a	project	
name	and	click	the	Next	button.	In	
the	Java	Settings	frame	add	a	source	
folder	for	the	project.	Click	the	Add	
Folder	button.	In	the	New	Source	
Folder	frame	specify	a	folder	name.	A	
message	frame	prompts	to	set	the	bin	
folder	as	the	build	output	folder.	Next,	
add	the	libraries	required	for	the	proj-
ect.	The	example	application	requires	
the	J2EE	JAR	in	the	classpath.	Select	
the	Libraries	tab	and	click	on	the	Add	
External	JARs	button.	
	 Add	the	J2EE	1.4	j2ee.jar	file	to	the	
project.	The	j2ee.jar	gets	listed	in	the	
project	Libraries.	Click	the	Finish	but-
ton	to	complete	the	configuration	of	
the	project.	A	project	gets	added	to	the	
Eclipse	IDE	Package	Explorer	view.
	 Next,	we’ll	specify	a	Web-
Logic	Server	configuration.	Select	
Window>Preferences.	The	Prefer-
ences	frame	gets	displayed.	Select	
the	WebLogic	node.	In	the	WebLogic	
preference	page	select	the	version	of	
the	WebLogic	Server	to	be	configured.	
Specify	the	different	field	values,	
which	are	listed	in	Table	1.	The	values	
may	vary	depending	on	the	directory	
in	which	the	server	is	installed	and	in	
which	the	domain	is	configured.	Click	
on	the	Apply	button	to	apply	the	speci-
fied	values.
	 If	any	JAR	files	have	to	be	added	
to	the	server	classpath,	select	the	
WebLogic>Classpath	node.	JAR/Zip	
files	or	directories	can	be	added	
before	the	WebLogic	libraries	or	after	
the	WebLogic	libraries.	Select	the	
WebLogic>JavaVM	Options	node	to	
specify	JavaVM	options.	For	example,	
modify	the	weblogic.ProductionMo-
deEnabled	property.	Set	the	property	

pluG-ins

by Deepak Vohra and Ajay Vohra

Configuring the
WebLogic-Eclipse Plug-in

T

Designed to run the WebLogic Server from the Eclipse IDE

Deepak Vohra is a

Sun Certified Java 1.4

programmer and

Web developer.

dvohra09@yahoo.com

Ajay Vohra is a senior

software engineer

with Compuware.

ajay_vohra@yahoo.com

JDJ.SYS-CON.com38 July 2006

value	to	false	to	start	the	server	in	
development	mode.	Click	on	the	Apply	
button	to	apply	the	JavaVM	options.
	 Next,	specify	the	projects	to	be	
debugged	with	the	WebLogic	Server	
configuration.	Click	on	the	Add	but-
ton.	Select	the	projects	to	be	added	to	
the	plug-in	configuration.	To	debug	
a	project,	the	project	has	to	be	in	the	
plug-in	configuration.	Click	the	OK	
button.	
	 The	selected	projects	get	added	to	
projects	list.	Click	on	the	Apply	button	
and	then	the	OK	button.	The	WebLogic	
plug-in	gets	configured	with	a	project	
and	the	WebLogic	Server.

Developing and Debugging a
WebLogic Application
	 After	configuring	the	WebLogic	
plug-in,	develop	a	J2EE	application	
to	deploy	and	debug	in	the	WebLogic	
Server.	The	example	J2EE	application	
consists	of	a	Session	EJB	and	a	client	
servlet.	The	J2EE	application	is	avail-
able	in	the	resources	zip	file	(source	
code	for	this	article	can	be	found	by	
viewing	the	article	online	in	the	WLDJ	
archives,	http://wldj.sys-con.com/
read/issue/archives/,	Vol.	5,	iss.	2).	
Extract	the	resources	zip	file	to	a	direc-
tory.	In	the	Eclipse	project	EclipseWe-
bLogic,	which	was	configured	in	
the	previous	section,	import	the	src	
directory	of	the	J2EE	application	with	
File>Import.	In	the	Import	frame	se-
lect	the	File	System	node	and	click	the	
Next	button.	In	the	File	system	frame	
select	the	directories/files	to	add	to	the	
project	and	click	the	Finish	button.
	 The	example	J2EE	application	files	
get	added	to	the	project.	Build	the	
project	with	the	Ant	build.xml	file.	
Right-click	on	the	build.xml	file	and	
select	Run>Ant	Build.	The	J2EE	ap-
plication	gets	built	and	deployed	in	the	
WebLogic	Server	applications	direc-
tory.	Next,	start	the	WebLogic	Server	in	
the	Eclipse	IDE	with	Run>Start	Web-
Logic.	The	Session	EJB/Servlet	applica-
tion	gets	deployed	in	the	WebLogic	
Server	as	listed	in	the	applications	
node.
	 Run	the	WebLogicServlet	in	the	
browser	with	the	URL	http://local-
host:7001/weblogic/webLogicPlug-
in.	The	output	from	the	servlet	is	
displayed	in	the	browser.	Next	add	an	
exception	(a	NullPointerException)	to	
the	client	servlet	to	demonstrate	the	
debugging	feature	of	the	WebLogic	
plug-in.	In	the	WebLogicServlet	servlet	
replace	

out.println(sessionEJB.getEclipsePlug-

in());

with

String str=null;

out.println(str.toString());

	 Add	a	breakpoint	to	the	servlet	with	
Run>Add	Java	Exception	Breakpoint.	
In	the	Add	Java	Exception	Breakpoint	
frame	select	the	NullPointerException.	
Delete	the	previous	build	directory	
and	build	the	application	with	the	
build.xml.	Select	the	Debug	perspec-
tive.	In	the	Debug	perspective	the		
WebLogic	Server	is	shown	to	be	run-
ning	at	localhost	host.

	 Run	the	example	servlet	(with	the	
NullPointerException)	in	the	browser.	
Because	the	servlet	has	an	exception	the	
server	gets	suspended	and	the	Debug	per-
spective	displays	the	NullPointerException.	
The	application	can	be	debugged	with	the	
debug	features	in	the	Run	menu	item.

Conclusion
	 Thus	the	WebLogic	Server	gets	
administered	from	the	EclipseIDE	with	
the	WebLogic	plug-in	and	applications	
deployed	in	the	server	are	debugged	
from	the	Eclipse	IDE.	A	limitation	of	
the	WebLogic	plug-in	is	that	debug-
ging	JSPs	isn’t	supported.	The	2.0	ver-
sion	of	the	plug-in	will	have	additional	
features.		

 Figure 1

Table 1 WebLogic Eclipse plug-in

Field Description Value
BEA Home The BEA installation directory C:/BEA
WebLogic Home The WebLogic Server installation directory C:\BEA\weblogic81
Domain Name The WebLogic domain mydomain
Domain Directory The WebLogic domain directory C:\BEA\user_projects\domains
 \mydomain
Server Name The WebLogic Server name myserver
User User to login to the WebLogic Server weblogic
Password Password to login to WebLogic Server weblogic
Hostname WebLogic Server hostname localhost
Port WebLogic Server port 7001

39July 2006JDJ.SYS-CON.com

ou’re	six-feet,	190	pounds	and	
can	type	System.out.println	
faster	than	most	people	can	
say	AJAX.	You’re	a	person	who	

dreams	about	the	Milwaukee	Brewers	
winning	the	World	Series	and	the	cor-
rect	data	structure	to	be	used	when	
talking	about	a	baseball	player.	You’ve	
spent	five	years	of	your	life	writing	Java	
code	and	leading	Java	development	
teams.	You	consider	yourself	an	expert	
in	Swing,	Struts,	XML,	and	XSL-FO	
and	feel	comfortable	talking	about	
any	other	buzzword	in	the	Java	world	
such	as	JSF,	Portal,	and	AJAX.	You’ve	
had	experience	as	development	lead	
on	a	team	with	anywhere	from	three	to	
seven	people	where	Java	applications	
were	rolled	into	production	well	within	
the	scheduled	deadline.	Now	you	have	
received	a	management	position	on	
an	internal	Java	development	team.	
Where	do	you	start?	What	things	do	
you	look	at	from	day	one?	What’s	your	
role	going	to	be	as	a	manager?	What	
would	you	like	to	see	happen	within	
your	team?	Do	you	want	to	keep	your	
technical	skills?	How	do	you	rate	your	
employees	at	the	end	of	the	year?
	 These	are	just	some	of	the	question’s	
that	you’ll	have	to	answer.
	 Fortunately,	I’m	the	Brewers	fan	
who	just	got	a	new	first-line	manage-
ment	position.	The	team	that	I’m	
managing	consists	of	18	employees	
with	skillsets	ranging	from	Java	Swing	
development	to	J2EE	Web	develop-
ment.	The	main	point	of	our	existence	
is	to	create,	support,	fix	and	build	tools	
inside	IBM	for	a	number	of	platforms.	
A	number	of	small	tools	have	already	
been	developed	that	use	Swing	tech-
nology	for	the	front-end.	The	small	
tools	end	up	communicating	with	DB2	
systems	on	the	back-end	and	start	a	
number	of	native	back-end	processes	

depending	on	the	back-end	servers’	
platform.	The	team	has	also	created	
a	Web	application	that	lets	internal	
developers	create	a	fix	pack	of	a	par-
ticular	product.	These	are	examples	
of	just	a	couple	of	the	many	Java	tools	
that	my	department	is	responsible	for.
	 Now	back	to	the	questions	at	hand.	
Where	does	a	manager	start	when	
taking	over	a	Java	development	team?	
These	are	just	a	couple	of	the	things	
that	concerned	me	when	coming	in	as	
manager	of	a	Java	development	team.

Who’s Doing What?
	 Every	manager	has	to	understand	
what	the	main	responsibility	of	the	
team	is.	Once	that’s	understood	then	
the	next	question	to	answer	is,	who	is	
working	on	achieving	that	goal.	What	
positions	have	been	defined	in	the	
department	to	carry	out	the	team’s	pri-
mary	responsibility?	For	instance,	do	
you	have	developers	working	on	a	sin-
gle	application	from	the	beginning	to	
end	or	do	you	have	each	software	de-
velopment	process	task	broken	down	
among	different	employees.	Once	you	
understand	the	tasks	that	everyone	is	
working	on,	does	it	matter	how	they’re	
done?	For	example,	the	team	that	I’m	
managing	has	application	owners	who	
are	responsible	for	the	entire	develop-
ment	process	lifecycle	for	a	particular	
application.	An	application	owner	
would	have	to	gather	the	new	require-
ments	that	come	in,	create	a	design	
that	fits	into	the	existing	application	
design,	develop,	unit	test,	and	do	the	
production	test.	And	if	an	external	
customer	discovers	a	problem	with	the	
tool	it’s	their	responsibility	to	fix	it.
	 Some	things	I’ve	heard	from	the	
group	is	that	testing	all	our	small	
tools	is	quite	expensive.	Every	small	
tool	is	dependent	on	each	other.	New	

functionality	added	to	one	of	them	
may	have	an	impact	on	another,	thus	
causing	all	application	owners	to	test	
their	code	before	it’s	released.	
	 From	a	resource	perspective	this	
really	scares	me.	You	wouldn’t	like	
your	most	experienced	developers	
spending	a	lot	of	time	on	testing.	Some	
would	disagree	with	me	on	this	and	
say	that	this	person	has	the	applica-
tion	domain	experience	and	should	
be	involved	in	production	testing.	
However,	I	feel	that	testing	something	
like	this	should	be	documented	in	
a	test	plan	and	tested	by	a	separate	
group.	Test	cases	could	be	written	by	
this	separate	group	cross-referencing	
the	requirements.	That	way	a	different	
set	of	eyes	could	manually	test	the	
application	outside	of	the	application	
owners	who	should	only	do	unit	test-
ing.		
	
Is There a Development Process?
	 As	the	manager	of	any	software	
department	I	would	hope	so.	Hardcore	
software	developers	hate	processes.	I	
know	this	from	past	experience.	When	
I	was	given	an	assignment,	I	wanted	to	
complete	it	as	fast	as	I	could	by	writing	
code.	If	you	wanted	to	know	my	prog-
ress	all	you	had	to	do	was	ask.	I	felt	the	
information	in	my	head	was	sufficient.	
However,	this	kind	of	thinking	makes	
things	very	hard	when	working	on	a	
team	that’s	larger	than	one	person.	
Information	has	to	be	communicated	
from	one	person	to	another.	The	
memory	of	what	someone	said	lasts	
only	so	long.	Having	documentation	
helps	remind	an	employee	of	what’s	
required.	It	helps	for	reviews	and	
lets	an	employee	hand	his	work	off	if	
something	happens	and	he’s	pulled	
from	the	project.		
	 Without	a	development	process	

deVelopment

Benjamin Garbers

Java Techie
to Manager

Y

You’ve got the job now what do you do?

Ben Garbers is

currently a 1st line

manager at IBM where

the department he

manages creates

and maintains Java

standalone applications

and dynamic Java web

applications run on

Websphere. Before his

management position

he was the lead devel-

oper on a number of

teams that developed

standalone Java

applications.

garbersb@us.ibm.com

JDJ.SYS-CON.com40 July 2006

it’s	even	harder	to	rate	employee	per-
formance.	Who	is	your	best	designer?	
Who	is	your	best	coder?	By	defining	
a	development	process,	the	strengths	
and	weaknesses	of	each	employee	can	
be	measured	at	particular	stages	of	the	
development	process.	Running	a	tool	
suite	that	does	metrics	throughout	a	
development	process	can	be	used	to	
measure	performance.	Tracking	and	
monitoring	this	kind	of	information	
will	also	help	you	understand	the	task	
force	needed	for	a	particular	project.	
For	instance,	if	a	manager	knows	how	
long	it	took	for	an	application	to	be	
finished	with	a	particular	number	
of	employees,	it	makes	it	easier	to	
estimate	how	long	it	will	take	those	
employees	on	the	next	project.	
	 The	team	that	I’ve	inherited	has	an	
ad	hoc	development	process.	There’s	
no	standardized	format	of	what’s	
required	in	each	development	phase.	
For	instance,	Team	A	could	have	a	
requirements	document	that	looks	
different	from	Team	B’s	requirements	
document.	Does	something	like	this	
need	to	be	standardized	throughout	
the	development	process?	Some	
would	argue	that	as	long	as	there’s	
documentation	for	each	develop-
ment	stage	it	shouldn’t	matter.	They’d	
also	argue	that	the	format	of	each	
document	should	be	up	to	the	project	
lead.	However,	if	you	have	employees	
switching	from	one	team	to	another,	
this	may	become	an	issue.	It	may	take	
an	employee	some	time	to	understand	
a	format	that’s	different	from	what	
they	used	in	a	prior	project.	From	a	
management	perspective	it’s	always	
nice	to	standardize	the	format	in	a	tool	
that	can	run	some	kind	of	metrics.	For	
example,	if	a	requirements	document	
is	submitted	with	a	tool,	metrics	could	
be	run	on	how	good	the	document	ac-
tually	is.	When	a	review	is	held	for	the	
requirements	document,	the	number	
of	problems	found	in	the	require-
ments	document	could	be	traced	and	
analyzed	by	a	manager.	This	could	be	
a	perfect	way	to	isolate	the	employees	

who	have	strong	requirements-gath-
ering	skills.	As	a	manager,	I	feel	it’s	a	
priority	to	make	sure	our	development	
team	has	a	standardized	format	for	all	
development	process	milestones.		

Are Swing Applications Old?
	 First	of	all	why	would	a	manager	
even	care	about	Swing	applications?	As	
long	as	the	development	lead	knows	
when	to	change	from	Swing	to	a	more	
Web-centric	application,	why	should	
a	manager	even	care?	The	reason	I	
ask	this	is	that	you	have	to	remember	
I	come	from	a	technical	background.	
I	feel	that	if	a	strategic	decision	has	
to	be	made	on	which	technology	we	
should	use,	I’d	like	to	be	part	of	it.	If	I	
were	the	type	of	manager	who	thought	
Swing	was	something	for	my	two-year-
old	son	then	of	course	you	wouldn’t	
want	me	in	the	discussion	at	all.		
	 We	have	a	number	of	Swing-based	
applications	that	are	used	by	our	inter-
nal	customers	and	by	administration.	
The	Swing-based	applications	follow	a	
fix	process	required	by	every	internal	
developer	who	wants	to	create	a	fix.	
This	fix	process	is	very	complicated	
and	requires	an	internal	developer	to	
run	a	number	of	the	Swing	applica-
tions	so	a	fix	can	be	created,	tested	and	
deployed	to	external	customers.	There	
have	been	a	number	of	developers	
who	have	implemented	additional	
functionality	within	the	Swing	ap-
plications.	Over	time,	this	has	made	
some	of	the	code	hard	to	read.	There	
is	logic	that	is	duplicated	because	a	
developer	was	not	aware	of	particular	
methods	that	already	existed.	There	
are	also	a	number	of	classes	that	were	
implemented	that	do	not	fit	within	the	
old	design	because	of	the	changing	
functionality.	Instead	of	enhancing	the	
old	design,	now	a	new	design	and	old	
design	exist	within	the	application.	
This,	of	course,	has	nothing	to	do	with	
the	debate	over	whether	Swing-based	
applications	are	old	but	does	create	
additional	work	if	you	were	to	migrate	
the	applications	from	Swing	to	a	

Web-based	tool.	Time	would	have	to	
be	spent	to	understand	the	differ-
ences	between	the	old	design	and	new	
design.	Eventually,	a	design	bringing	
both	of	them	together	would	have	to	
be	created.		
	 From	a	manager’s	perspective	I	see	
a	couple	of	questions	that	have	to	be	
answered	when	looking	at	migrating	
Swing	applications	to	Web	applica-
tions.	First,	does	my	customer	need	
this?	Currently,	a	number	of	different	
commands	are	run	on	an	AIX	or	Win-
dows	command	line	to	run	the	Swing	
applications.	The	internal	custom-
ers	feel	it’s	easier	to	go	to	a	browser	
instead	of	understanding	command-
line	syntax	to	run	the	applications.
	 Do	I	have	the	skillsets	on	my	team	
to	transfer	the	Swing	application	to	a	
Web-based	tool?
	 My	team	is	very	skilled	in	Java	
and	has	experience	in	creating	Web	
applications.	I	worry	that	there’ll	be	
problems	transferring	all	the	logic	
from	the	Swing-based	applications	to	
the	Web-based	applications	correctly	
because	of	the	current	design	prob-
lems	that	exist.	However,	this	would	be	
a	perfect	time	to	analyze	the	problems	
and	correct	them.
	 Are	there	enough	people	on	my	
team	to	do	this?	This	is	the	extremely	
hard	part	of	being	a	manager.	Esti-
mating	how	long	a	project	can	take	is	
not	a	fine	art.	If	the	estimation	isn’t	
done	properly,	time	is	wasted	or	not	
enough	employees	are	allocated.	
The	migration	requirements	must	
be	gathered	and	sized.	Once	sized,	a	
manager	must	support	his	develop-
ment	leads	with	the	resources	that	
they	need.		
	 These	are	just	a	couple	of	the	things	
that	I’ve	chewed	on	my	first	month	of	
experience.	Perhaps,	other	first-time	
managers	have	had	the	same	things	
happen	in	their	department.	Making	
management	decisions	is	not	an	exact	
art	but	hopefully	the	situations	I’ve	
described	give	you	an	idea	of	one	ap-
proach.			

“Where does a manager start when
taking over a Java development team?”

41July 2006JDJ.SYS-CON.com

esting	Java	code	is	increasingly	a	task	taken	on	by	
developers	rather	than	separate	teams	to	which	
the	programs	are	handed.	Many	Java	developers	
are	now	familiar	with	JUnit	and	know	the	different	
between	unit	tests	and	integration	tests.	This	has	

been	driven	largely	by	the	focus	on	test-driven	development	
(TDD)	in	extreme	programming	(XP)	and	other	agile	software	
development	methodologies.	While	the	industry-at-large	has	
recognized	the	value	of	unit	tests	and	has	a	new	outlook	on	
testing	in	general,	for	the	most	part,	actual	TDD	(meaning,	
the	tests	are	written	first)	is	not	usually	practiced	outside	of	
hardcore	agile	shops.
	 In	this	article,	we’ll	present	a	specific	example	(based	on	a	
real-world	scenario	that	we	recently	faced)	and	walk	step-by-
step	how	to	take	a	pure	TDD	approach	and	hopefully	show	
the	benefits	of	embracing	TDD	completely	in	this	scenario.	
(For	a	clear	and	concise	explanation	of	some	of	the	major	
benefits	of	TDD	in	general,	see	http://www.extremeprogram-
ming.org/rules/testfirst.html.)

The Scenario
	 This	scenario	is	modeled	closely	on	one	we	faced	at	a	cli-
ent	site	recently.	In	short,	we	were	a	pair	on	a	development	
team	working	on	a	project	with	typical	issues:	
1.	A	deadline/delivery	date	had	been	set
2.	Little	or	no	requirements	existed	and
3.	It	didn’t	look	like	we’d	be	getting	requirements	any	time	

soon	(due	to	limited	staffing,	etc.).

	 The	project	goal	was	to	build	a	marketing	Web	site	around	
the	client’s	existing	feed	management	product.	At	a	high	level	
and	besides	product	marketing,	the	Web	site	should	include	
basic	information	and	some	rudimentary	services	related	to	
Web	feeds	(RSS,	Atom,	etc.).	The	list	of	services	included:
1.	A	“feed	finder”	service:	the	user	must	be	able	to	enter	

a	URL	somewhere	on	the	site	that	will	produce	a	list	of	
candidate	feed	URLs	that	it	found	at	that	URL.

2.	A	“feed	validation”	service:	the	site	will	analyze	a	user-
provided	URL	and	inform	the	user	if	the	document	found	
at	that	URL	is	a	valid	RSS	or	Atom	feed.

	 To	mimic	the	last-minute	changes	in	requirements	we’ll	
imagine	that	a	business	stakeholder	stopped	by	our	cubicles	
and	provided	some	additional	information	this	morning:	the	
site	must	have	a	“coolness”	factor,	i.e.,	make	the	site	an	active	
Web	2.0/AJAX	site.	A	new	person	has	been	hired	to	handle	
the	user	interface,	HTML	and	JavaScript;	our	job	is	to	build	
remote	components	that	will	implement	the	services	listed	
above.

Constraints
	 The	client’s	standard	production	platform	is	Java	5,	JBoss	
4.x,	and	MySQL	4.1	on	Red	Hat	Linux.	We’re	supplied	with	a	
workstation	running	Windows	XP	Pro,	Eclipse	3.1,	Java	5,	and	
JBoss	4.0.1.

Decisions
	 We	decided	to	assess	the	risk	level	of	each	service.	RSS	
and	Atom	standards	are	well	known	and	there	are	a	variety	
of	tools	that	we	can	probably	use	to	implement	the	“feed	
validation”	service,	which	doesn’t	feel	that	risky.	The	“feed	
finder”	service	feels	much	riskier	since	there	are	many	
ways	to	detect	a	candidate	feed	for	a	supplied	URL,	some	of	
which	are:
1.	We	can	try	to	discover	the	feed	from	the	HTML	docu-

ment	at	the	supplied	URL	using	<link>	elements	in	the	
HTML	<head>	section;

2.	We	can	spider	the	URL’s	Web	site	for	common	feed	file	
names	like	rss.xml,	atom.xml,	rdf.xml,	feed.rss,	etc.;

3.	We	can	try	to	get	the	feed	URL	by	using	a	Web	Service	
like	Syndic8’s	XML-RPC	services.

	 We’re	not	too	worried	about	the	service	interfaces	with	
the	AJAX	pages;	we	know	we’ll	probably	have	to	write	a	
servlet	that	accepts	a	GET	or	POST	request	with	a	URL	
parameter.	And	while	we’re	not	sure	if	we’ll	use	XML	or	
plain	text	in	the	response,	we	think	that’s	a	straightforward	
problem.	We	proceed	to	tackle	what	we	think	are	the	risky	
unknowns	(like	how	to	find	feed	references	from	a	docu-
ment)	and	start	by	writing	a	test	for	the	discovery	method	
of	“feed	finding.”

T

Write Right Java Faster Using
Test-Driven Development
The benefits of embracing TDD by Richard Cariens

& John Evans

Richard Cariens is an

independent software con-

sultant in the Washington

D.C. area (www.jpevans.

com). He has over 10 years

of experience testing,

developing, designing,

and architecting Internet

technology and financial

systems. Rich holds an MS

in computer science from

George Mason University in

Fairfax, Virginia.

John Evans is the founder

and president of JPEvans,

Inc. (www.jpevans.com),

a small independent com-

puter consulting company

based in Northern Virginia

just outside of Washington

D.C. John has over 10 years

of professional experience

in software development.

He has successfully de-

veloped and deployed large-

scale software systems for

several large multi-national

corporations.

JDJ.SYS-CON.com42 July 2006

Getting Started
	 We	think	it	will	be	easier	to	write	the	tests	if	we	break	up	
the	service	into	two	discrete	steps:
1.	Download	the	HTML	document	from	the	supplied	URL;
2.	Parse/search	the	document	for	<link>	tags	with	“type”	

attributes	of	“application/rss+xml,”	“application/
atom+xml,”	“application/x.atom+xml,”	or	“application/x-
atom+xml.”

	 First	we	create	a	simple	empty	Eclipse	project	for	our	feed	
finder	and	add	a	new	JUnit	Test	Case	(see	Figure	1).	Then	we	
call	the	test	“FeedAutoDiscovererUnit”.
	 For	starters,	we	add	a	test	for	detecting	RSS	links	that	auto-
matically	fails	(since	we	don’t	have	anything	to	test	yet)	and	
we’re	ready	to	start	defining	success	and	failure	criteria.
	 Note	that	even	though	we	haven’t	written	any	application	
code,	we	know	that	we’re	probably	headed	towards	creating	a	
class	called	FeedAutoDiscoverer	and	that	we’re	expecting	this	
class	to	be	able	to	find	an	RSS	link	in	a	document.

Writing the Test
	 Now	we	have	to	generate	some	input	HTML	that	con-
tains	a	<link>	tag	with	a	type	of	“application/rss+xml”	(the	
Atom	test	will	come	later).	We	add	a	simple	in-line	HTML	
document	that	contains	the	expected	link	to	our	“testFind-
sRssLink”	method.
	 Now	we’re	ready	to	introduce	the	component	that	will	
implement	the	discovery	logic.	We	replace	the	“fail”	state-
ment	with	a	call	to	an	instance	of	a	class	called	FeedAuto-
Discoverer.	We	decide	that	this	class	should	implement	a	
method	called	“discoverLinks”	that	accepts	a	string	and	
returns	a	list	of	strings.	We	also	add	assertions	that	help	us	
know	if	the	FeedAutoDiscoverer	discovered	the	RSS	link	
type	correctly:
1.	We	know	that	our	test	input	only	has	one	<link>	tag	in	it	

so	we	assert	that	the	FeedAutoDiscoverer	returns	a	list	
with	one	element;

2.	We	know	that	our	test	input	contains	a	<link>	tag	with	a	
specific	“href”	attribute	and	we	want	to	see	that	expected	
href	value	in	the	list	(see	Figure	2).

	 Note	the	red	decorations	on	the	test	source.	The	FeedAuto-
Discoverer	class	doesn’t	exist	yet	so	let’s	use	Eclipse’s	“quick-
fix”	capabilities	to	create	it	for	us	from	this	test	(press	Ctrl	+	1	
while	the	red-underlined	code	has	cursor	focus).
	 We	tell	Eclipse	we	want	this	class	to	live	under	the	“src”	
source	folder	instead	of	the	“tests”	folder	and	then	let	the	
wizard	generate	the	class	for	us.
	 Once	the	empty	FeedAutoDiscoverer	is	generated,	we	still	
find	we	can’t	compile	our	test	because	the	method	“discover-
Links”	method	doesn’t	exist.	We	let	Eclipse	generate	this	for	
us	as	well	(see	Figure	3).
	 Eclipse	generates	an	empty	method	for	us	with	a	handy	
“TODO”	reminder	that	we’ll	eventually	have	to	change	this	
method.
	 The	test	will	now	compile	and	is	ready	for	its	first	run.	Of	
course	it	will	fail,	but	that’s	to	be	expected	since	our	Feed-
AutoDiscoverer	just	returns	null.

		 Now	that	we’ve	written	the	test,	we	can	focus	on	making	
the	test	pass.

Making the Test Pass
	 We’re	going	to	try	to	write	the	simplest	code	that	will	make	
the	test	pass.	We	know	there	are	several	ways	to	detect	a	
<link>	tag	in	an	HTML	document:
1.	We	can	sub-class	the	HTMLEditorKit.ParserCallback	

from	the	javax.swing.text.html	package;
2.	We	could	use	a	third-party	HTML/XML	parsing	library	

like	TagSoup,	HotSax,	NekoHTML,	JTidy,	etc;
3.	We	could	use	regular	expressions	and	other	“brute	force”	

techniques.

	 We	decide	to	go	with	option	3,	specifically	Java	regular	ex-
pressions,	since	there’s	some	resistance	to	introducing	a	new	
and	uncertified	framework	at	the	client	site.	We	start	fleshing	
out	the	FeedAutoDiscoverer	by	making	sure	it	returns	a	list	
of	strings.	We	know	that	the	regular	expression	must	match	
<link>	tags	with	a	“type”	attribute	of	“application/rss+xml.”	
We’ll	also	want	to	extract	the	“href”	attribute	from	all	match-
ing	tags,	so	we	should	be	sure	to	wrap	the	“href”	attribute	
value	in	a	capturing	group.	Our	first	version	of	the	FeedAuto-
Discoverer	looks	similar	to	Figure	4.
	 Lucky	for	us,	the	test	passes!
	 After	congratulating	ourselves	on	our	success,	we	realize	

 Figure 1 Creating the first test

 Figure 2 Test-driven design

43July 2006JDJ.SYS-CON.com

Feature

that	the	<link>	attributes	might	appear	in	any	order	and	with	
embedded	new	lines.	We	decide	to	write	a	second	test	to	
handle	this	new	scenario.	This	test	case	switches	the	“type”	
and	“href”	attribute	ordering	and	adds	a	new	line	between	
them.
	 Sure	enough,	we	find	that	our	FeedAutoDiscoverer	doesn’t	
handle	this	scenario;	the	new	test	fails.
	 We	open	up	the	FeedAutoDiscoverer	and	tweak	the	regular	
expression	so	that	it’ll	hopefully	handle	the	new	scenario:
1.	We	add	an	OR	operator	to	the	original	expression	and	

switch	the	order	of	the	“type”	and	“href”	attributes	in	the	

new	half;
2.	We	add	the	DOTALL	flag	to	the	expression,	which	allows	

the	‘.’	character	to	match	new	lines.
	 Now	the	FeedAutoDetector	looks	like	Figure	5.

	 Running	the	test	again	results	in	failure,	but	it	looks	like	the	
regular	expression	may	have	worked	since	it’s	the	contents	
of	the	list	that	are	wrong.	Reviewing	our	changes	shows	us	
that	we	forgot	to	update	our	capture	group	handling.	We	have	
two	capture	groups	in	the	regular	expression	and	have	to	add	
the	proper	group	contents	depending	on	which	half	of	the	
regular	expression	worked,	so	we	change	our	logic.
	 We	find	that	the	test	now	passes	and	we’re	ready	to	move	
on	to	adding	more	tests	for	auto-discovering	Atom	link	refer-
ences,	etc.
	 There’s	a	lot	more	to	do,	but	we’re	well	on	our	way	to	deliv-
ering	the	site	“Feed	Finder”	service.	If	we	wanted	to,	we	could	
stop	here	with	auto-detection	and	start	building	out	the	
downloader	component	and	the	servlet,	or	we	could	extract	
an	interface	from	the	FeedAutoDiscoverer	and	start	work	
on	fitting	it	into	an	IoC	container	like	Spring.	Whatever	we	
decide	to	do,	we	now	have	two	tests	that	we	can	use	to	sanity-
check	changes	we	make	from	this	point	forward	that	might	
impact	feed	auto-discovery.	If	these	tests	continue	to	pass	as	
we	change	the	system	(and	we	should	run	our	tests	often),	
we’ll	become	more	confident	and	comfortable	with	handling	
change.
	 (As	an	aside,	at	this	point	in	real	life,	we	discovered	that	
there	was	actually	a	spec	for	ATOM-based	feed	auto-discov-
ery	at	http://philringnalda.com/rfc/draft-ietf-atompub-au-
todiscovery-01.html.	So,	we	took	each	of	the	examples	in	the	
RFC	and	coded	them	up	as	unit	tests,	and	made	sure	that	our	
FeedAutoDiscoverer	successfully	discovered	them.)

Conclusion
	 Test-driven	development	helped	us	in	many	ways	on	this	
project:
	1.	It	forced	us	to	translate	our	ambiguous	requirements	into	

verifiable	test	criteria;
2.	The	test	criteria	helped	us	focus	on	doing	just	what	was	

needed	to	pass	the	test,	and	thus	hopefully	satisfying	the	
requirements;

3.	We	avoided	the	heavy	front-loading	of	design	documen-
tation	and	focused	on	getting	some	working	code.

	 While	we’ll	ultimately	write	more	code	with	this	approach	
we’ll	have	fewer	defects	in	the	end	product.	Testing	early	will	
also	help	us	uncover	requirements	errors	or	changes	that	would	
be	expensive	to	address	in	the	later	stages	of	the	project.	

References
•		http://extremeprogramming.org/rules/testfirst.html
•		http://extremeprogramming.org/stories/testfirst.html
•		http://en.wikipedia.org/wiki/Test_driven_development
•		http://www.testdriven.com/
•		http://www.aaronsw.com/2002/feedfinder/
•		http://www.syndic8.com/web_services/
•		http://java-source.net/open-source/html-parsers
•		http://mercury.ccil.org/~cowan/XML/tagsoup/

 Figure 3 Generating the method

 Figure 4 A good start

 Figure 5 Capture group handling

JDJ.SYS-CON.com44 July 2006

2 3

C
O

P
Y

R
IG

H
T

 ©
20

06
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

ne	of	the	phrases	that	has	al-
ways	puzzled	me	is	“business	
logic”.	It	seems	to	crop	up	a	
lot	in	presentations,	articles,	

sales	pitches	and	so	forth.		The	one	I	
saw	it	in	most	recently	was	a	talk	about	
how	great	web	servers	are	because	they	
keep	all	of	the	business	logic	on	the	
server	where	it	can	be	robust,	secure,	
and	logged.		By	analogy	the	client	is	a	
poor	place	for	business	logic	because,	
while	it	can	do	richer	things	with	the	
user	interface,	all	of	the	core	rules	
must	be	kept	on	the	server.
	 It’s	not	the	first	time	I’ve	come	
across	server	heads	who	use	this	
argument,	that	their	box	has	to	be	
the	gatekeeper	for	all	of	the	hard	and	
important	corporate	logic.	By	using	
the	adjective	“business”	they’re	sort	
of	belittling	the	desktop	in	any	client	
server	equation	to	be	good	for	nothing	
more	than	fancy	editing	controls	and	
salad	dressing	the	user	experience.
	 The	problem	is	that	often	when	you	
push	people	for	what	business	logic	real-
ly	means,	it	boils	down	to	something	like	
“this	value	can’t	be	larger	than	the	sum	
of	these	values”	or	“this	date	can’t	be	be-
fore	this	date	for	this	kind	of	transaction”.		
It’s	an	answer	that	more	often	than	not	
sounds	to	me	like	something	the	GUI	is	
not	only	perfectly	capable	of	doing,	but	
is	probably	most	sensibly	done	on	the	
desktop.		After	all,	it	can	notify	errors	in-
stantly	on	mouse	and	keyboard	events,	
and	provide	completion	assistance	and	
help	without	incurring	the	latency	of	an	
expensive	server	round	trip.
	 Wikipedia	describes	“business	logic”	
with	the	following	sentence:

“Take a spreadsheet, for example. The
spreadsheet in itself is a generic tool and
embodies no business logic as such. When
you use the spreadsheet by encoding formu-
las which calculate values of importance to
your organization, then you are encoding
business logic”

	 For	any	server	guy	reading	this,	a	
spreadsheet	is	a	desktop	application.	

However,	the	key	phrase	in	the	defini-
tion	above	is	“importance	to	your	
organization,	then	you	are	encoding	
business	logic”.
	 From	that	definition	I	think	that	
all	code	any	of	us	have	ever	written	
is	business	logic.	I	assume	of	course	
none	of	us	have	ever	written	stuff	that	
wasn’t	important	to	whichever	orga-
nization	was	paying	our	salary	at	the	
time.
	 Why	then	is	there	such	a	mys-
tique	about	the	phrase	?		I	think	it’s	
because	as	soon	as	the	adjective	
“business”	is	placed	around	some-
thing	it	means	that	it’s	more	impor-
tant	to	the	organization	and	therefore	
attracts	the	attention	of	managers,	
accountants	and	analysts.		Busi-
ness	modeling	is	something	done	by	
analysts	(proper	analysts,	not	people	
who	write	specs	for	programs	that	
developers	have	to	stay	at	work	late	
and	write)	where	they	take	apart	the	
mechanics	and	structure	organiza-
tion	of	an	organization	in	attempt	
to	apply	change	management	and	
restructure	its	processes	to	be	more	
efficient	and	cost	effective	in	future.		
A	Masters	of	Business	Administra-
tion	studies	for	three	years	or	more	
to	understand	this	in	depth,	hoping	
for	a	destiny	in	the	echelons	of	senior	
management	to	perfect	and	apply	
their	skills.		There	are	even	execu-
tive	MBA	programs	for	those	who	are	
aiming	even	higher	up	the	corporate	
ladder.		I	wonder	whether	MBAs	drill	
into	people	a	subliminal	Pavlovian	
association	that	make	its	graduates	
salivate	each	time	the	word	“busi-
ness”	is	used	to	prefix	an	otherwise	
boring	task,	such	as	coding	spread-
sheet	cells.		
	 It’s	not	just	business	logic	that	one	
can	dissect	in	this	way,	but	there	are	a	
slew	of	terminologies	such	as	“busi-
ness	process	execution	language”,	
“business	event	publishing”,	or	“busi-
ness	process	modeling	notation”.		If	
you	dig	hard	enough	behind	the	sea	of	
white	papers	and	PowerPoint	charts	

surround	these	however,	you’ll	find	
that	at	the	core	of	each	is	some	plain	
old-fashioned,	unfashionable,	boring	
old	code.		“When	value	foo	reach	val-
ues	a	limit	moo	write	value	foo*100	to	
buffer	boo	that	program	goo	reads	and	
updates	database	yoo	with”.
	 There	is	benefit	in	abstracting	lines	
of	code	to	higher	level	units.		Both	
from	the	benefits	of	modularity	and	
re-use,	while	object-oriented	program-
ming	further	reifies	blocks	of	work	
to	become	recognizable	tasks	and	
functions	around	anthropomorphic	
functions.		What	troubles	me	though,	
is	when	just	because	someone	has	
grabbed	a	trendy	name	for	what’s	basi-
cally	just	code,	and	then	denigrates	
those	who	aren’t	using	their	coding	
technique	as	being	fat,	thick,	poor,	or	
whatever	other	insult	they	can	dream	
up,	allowing	them	smugly	preaching	
the	benefits	of	the	new	“business	logic	
application	hardware”	(BLAH)	tech-
nique	they	created	with	impunity.
	 We	all	write	business	logic.		From	
games	programmers,	to	COBOL	guys,	
through	Java,	Visual	Basic,	and	spread	
sheet	macro	heads.		A	good	rule	of	
thumb	I	think	is	to	always	apply	the	
wikipedia	test,	which	is	when	coding	
or	designing,	to	continually	question	
the	importance	of	what	you’re	doing	
to	the	organization	for	whom	the	pro-
gram	is	being	built.		
	 Business	logic	can,	and	does,	run	
anywhere,	in	any	language,	on	any	
platform.		Next	time	you	see	an	over	the	
top	presentation	being	given	by	some-
one	who	dresses	up	their	newfangled	
architecture	with	the	“business”	adjec-
tive	start	questioning	them	hard	and	
peel	back	the	layers	of	their	onionware.		
You’ll	find	that	behind	the	robes	there’s	
just	some	code	served	up	in	an	alpha-
bet	soup	of	acronyms	to	make	it	current	
and	confusing.		Then	question	whose	
benefit	this	is	for.		The	customer	for	
who	the	application	is	going	to	work,	or	
the	company	whose	consulting	services	
are	behind	the	presentation.		Seems	
pretty	logical	to	me.	

desktop JaVa Viewpoint

Joe Winchester
Desktop Java Editor

Who does
Business Logic ?

O

Joe Winchester is

a software

developer

working on

WebSphere

development tools

for IBM in

Hursley, UK.

joewinchester@
sys-con.com

JDJ.SYS-CON.com46 July 2006

24/7

Visit the

Website Today!

24/7

y	now,	you’ve	probably	heard	
about	Eclipse	as	“the	Open	
Source	Java	IDE”	(http://www.
eclipse.org).	Today,	several	
companies	have	looked	past	

the	Java	IDE	plug-ins	provided	as	part	
of	Eclipse,	and	are	creating	products	
that	use	Eclipse	as	a	tool	integration	
platform,	both	inside	and	outside	of	
the	Java	arena.	But	what	about	using	
royalty-free,	Open	Source	Eclipse	tech-
nology	as	a	general-purpose	applica-
tion	framework	for	your	next	desktop,	
fat	client,	or	embedded	application?	
With	the	support	provided	by	the	
Eclipse	Rich	Client	Platform	(RCP)	
and	the	embedded	version	of	the	
same	(eRCP)	the	idea	is	certainly	not	
as	strange	as	it	first	sounds.	So	we’ll	
explains	why	Eclipse	is	a	solid	desktop,	
rich-client,	or	embedded	application	
framework	with	the	potential	to	greatly	
simplify	and	accelerate	development	
as	well	as	forever	change	the	way	
developers	think	about	writing	Java	
applications.
	 Software	development	is	often	
about	compromises.	Currently,	one	
of	the	most	visible	debates	centers	
on	the	tradeoffs	between	productiv-
ity	applications	and	browser-based	
UIs.	In	spite	of	what	current	media	
coverage	might	lead	one	to	believe,	the	
industry	hasn’t	decided	to	throw	away	
all	its	desktop	applications	in	favor	
of	browser-based	UIs	rendered	with	
some	combination	of	HTML/XML/
XSLT/Javascript.	The	reason	can	be	
summed	up	in	three	words:	“the	user	
experience.”	Form	follows	function…	
is	the	key	criteria	for	judging	usability.	
In	practice,	high	user	interactivity	
or	complex	data	relationships	make	
delivering	user	interfaces	as	a	desktop	
application	less	of	a	choice	and	more	
of	a	requirement.
	 In	today’s	computing	environments	

it’s	important	to	deliver	user	inter-
faces	that	can	run	on	a	wide	variety	
of	platforms.	The	range	is	broad	
–	including	small	handheld	devices	
as	well	as	server	consoles.	When	us-
ers	interact	with	applications	in	the	
window	management	environments	
they’re	most	familiar	with,	using	the	
application	must	feel	natural	and	
predictable.	
	 Building	a	productivity	application	
means	starting	with	a	good	design	and	
a	supportive	architecture.	Since	there’s	
no	universally	accepted	application	
framework,	most	developers	design	
their	own	architecture	and	then	build	
it	into	a	framework.	However,	the	
cost	of	this	approach	is	considerable	
expense,	time,	debugging,	support,	
and	aggravation	expended	on	solving	
a	problem	that’s	peripheral	to	building	
the	functionality	of	the	intended	ap-
plication.
	 A	much	better	approach	than	“roll-
ing	your	own”	application	framework	
would	be	to	find	one	that	could	
fulfill	the	design	requirements	while	
simplifying	and	accelerating	project	
development.	A	“wish	list”	for	such	a	
framework	would	likely	contain	the	
following:

•	 Implements	a	clear,	consistent,	and	
cohesive	architecture

•	 Supports	development	and	execu-
tion	on	all	the	major	desktop	plat-
forms	(Windows,	Mac	OS	X,	Linux,	
QNX	Photon,	Pocket	PC,	HP-UX,	
AIX,	Solaris)

•	 A	snappy	UI	response	that	main-
tains	the	platform’s	native	look-and-
feel

•	 Provides	a	large	variety	of	widgets,	
both	standard	(i.e.,	button	and	
checkbox)	and	extended	(i.e.,	tool-
bar,	tree	view,	and	progress	meter)

•	 Provides	extensive	text	processing	

that	includes	editors,	position/
change	management,	rule-based	
styling,	content	completion,	format-
ting,	searching,	and	hover	help

•	 Supports	using	platform-specific	
features	(i.e.,	ActiveX)	and	legacy	
software,	if	desired	

•	 Enables	branding	the	application
•	 Contains	an	integrated	help	system
•	 Manages	user	configuration	and	

preferences	
•	 Supports	remote	discovery	and	

installation	of	application	updates
•	 Created	and	backed	by	respected	

software	companies	experienced	in	
creating	object	oriented	frameworks

•	 Supports	internationalization	and	
national	language	translation

•	 Designed	for	flexibility	with	natural	
features	for	adding	new	functional-
ity

•	 “Pay”	only	for	what	you	need	–	base	
frameworks	can	be	easily	reduced	
as	well	as	extended	to	tailor	capa-
bilities	to	precise	requirements

	 To	complete	our	“wish	list”	we	
might	as	well	add	that	the	technology	
be	used	and	supported	by	a	multi-in-
dustry	charitable	foundation,	created	
and	maintained	by	an	Open	Source	
community,	royalty-free	and	licensed	
to	provide	worldwide	redistribution	
rights.	Although	these	requirements	
may	sound	like	a	pipe	dream,	it’s	likely	
that	Java	application	developers	al-
ready	have	this	incredible	application	
framework	installed.	It’s	Eclipse.

Can Eclipse Be Used as an
Application Framework?
	 The	Eclipse	Project	FAQ	say	“The	
Eclipse	Project	is	an	Open	Source	soft-
ware	development	project	dedicated	
to	providing	a	robust,	full-featured,	
commercial-quality	industry	plat-
form	for	the	development	of	highly	

open source

Todd Williams

Eclipse: a Solid Desktop, Rich-Client,
or Embedded Application Framework

B

A general purpose platform

Todd Williams is

Genuitec’s VP of

technology and leads

its Eclipse Technology

Consulting Practice.

He has over 20 years of

industry experience in

developing comput-

ing infrastructures,

large-scale distributed

software architectures,

and optimizing develop-

ment processes, tech-

niques, and tools. Todd

has been Genuitec’s

representative to the

Eclipse Foundation

since 2002 and cur-

rently holds an elected

seat on the Eclipse

Foundation’s board of

directors.

JDJ.SYS-CON.com48 July 2006

integrated	tools.”	So	by	definition,	
Eclipse	is	an	open	platform	for	tools	
integration,	not	an	IDE.	The	issue	has	
been	confused	because	a	complete	in-
dustrial-strength	Java	IDE	is	available	
in	the	Eclipse	Platform	in	the	form	
of	plug-in	components	that	extend	
Eclipse’s	basic	framework	facilities.
	 Eclipse	provides	the	framework	for	
combining	disparate	tools	into	a	single	
integrated	application	with	a	seamless	
user	interface.	New	tools	are	inte-
grated	into	the	Eclipse	Platform	and	
its	user	interface	through	plug-ins	that	
extend	Eclipse’s	facilities	and	provide	
new	functionality.	Eclipse	plug-ins	can	
also	extend	other	plug-ins.	When	an	
Eclipse-based	application	initializes,	it	
discovers	and	activates	all	of	the	plug-
ins	that	have	been	configured	for	the	
environment.	An	Eclipse	application	is	
quite	literally	the	sum	of	its	parts	since	
it’s	capable	of	performing	any	function	
that	has	been	added	to	it	by	the	plug-
ins	it	currently	contains.
	 Since	being	able	to	write	and	test	
such	plug-ins	is	essential	to	the	suc-
cess	of	Eclipse,	the	Eclipse	Platform	is	
bundled	with	a	plug-in	development	
environment	(PDE)	and	a	set	of	Java	
development	tools	(JDT)	to	support	it.	
Eclipse’s	developers	clearly	trusted	the	
power	of	the	frameworks	they	created.	
The	entire	development	environment	
is	just	another	set	of	tools	integrated	
into	the	platform	using	the	standard	
plug-in	techniques.	The	Eclipse	
Platform	itself	was	itself	created	by	
developers	using	the	Eclipse-based	
Java	IDE	(initially	in	beta	form).	And,	
since	it’s	Open	Source,	anyone	can	in-
spect	the	code	and	understand	in	great	
detail	exactly	how	the	frameworks	are	
supposed	to	be	used.	
	 It’s	this	practice	of	packaging	the	
development	tools	with	the	platform	
that	causes	some	people	to	be	con-
fused	about	the	nature	of	Eclipse.	The	
JDT	components	are	so	effective	that	
they’re	attractive	to	all	Java	develop-
ers,	not	just	those	writing	plug-ins.	
On	the	surface,	Eclipse	appears	to	be	
just	an	excellent	Java	IDE.	But	instead	
of	thinking	about	Eclipse	simply	as	
a	Java	IDE,	try	to	think	about	it	as	a	
productivity	application	that	happens	
to	include	a	Java	IDE	built	using	the	
underlying	Eclipse	Platform	as	an	ap-
plication	framework.

Eclipse Framework Features
	 Eclipse	embodies	an	extensible	
design	that	maximizes	its	flexibility	as	

an	architectural	platform.	At	its	core,	
the	Eclipse	Platform	contains	an	ef-
ficient	implementation	of	the	OSGi	R4	
core	framework	specification	known	
as	Equinox,	which	is	used	to	boot-
strap	the	application.	Up	from	that,	
the	Eclipse	architecture	defines	sets	
of	layered	subsystems	that	allow	it	to	
be	used	as	a	framework	for	a	portable	
application	(or	suite)	that’s	not	an	IDE	
at	all.	And,	since	the	frameworks	are	
layered	and	coupled	only	at	distinct	
architectural	interfaces,	an	application	
can	be	built	by	combining	only	the	
frameworks	it	needs,	while	eliminating	
those	that	it	doesn’t.
	 The	following	sections	describe	the	
primary	Eclipse	features	that	make	
it	attractive	as	a	general	application	
framework.

Extensibility Model
	 Requirements	change	over	time	so	
developers	often	expend	consider-
able	effort	designing	applications	so	
that	they’re	flexible	and	extensible.	
Eclipse	is	built	around	a	highly	flexible	
and	extensible	plug-in	model	so	any	
type	of	capability	can	be	added	to	
the	platform.	If	an	application	can	be	
thought	of	as	a	tool,	or	set	of	tools,	it	
immediately	becomes	apparent	that	
its	functionality	can	be	added	to	an	
Eclipse-based	framework	as	a	set	of	
plug-ins	just	as	Eclipse’s	native	Java	
IDE	capabilities	have	been.

Content Model
	 Eclipse	provides	a	content	model	
built	around	the	concept	of	a	work-
bench	in	which	tools	(capabilities)	

can	be	installed.	The	tools	operate	
on	resources	organized	into	projects	
in	the	workspace.	Projects	contain	a	
tree	structure	of	resources,	which	are	
folders	and	files	containing	any	type	of	
content.	The	core	platform	provides	a	
large	number	of	extension	points	that	
allow	the	customization	of	all	aspects	
of	resource	lifecycle	management.
	 The	hierarchical,	categorized	
nature	of	the	content	model	lends	
itself	to	many	kinds	of	productivity	
applications	with	a	bit	of	thought.	
For	example,	a	simple	e-mail	client	
could	be	built	on	a	workspace	that	
contains	a	single	project	associated	
with	the	user’s	e-mail	account.	The	
user’s	project	could	contain	folders	for	
common	functional	e-mail	elements	
such	as	inbox,	outbox,	and	sent	items.	
Each	of	these	folders	could	contain	the	
corresponding	set	of	e-mail	messages	
as	project	resources.

Native Widgets
	 The	Eclipse	platform	contains	a	
standard	widget	toolkit,	SWT,	imple-
mented	natively	on	all	supported	
Eclipse	platforms.	SWT	contains	a	
large	set	of	events,	layout	manag-
ers,	and	widgets.	When	a	supported	
platform	doesn’t	contain	a	native	
widget	supported	by	Eclipse,	such	
as	a	toolbar	on	Motif,	an	emulated	
widget	for	that	platform	is	provided.	
SWT	also	interacts	with	native	desktop	
features,	such	as	drag-and-drop.	SWT	
can	also	use	OS-specific	components,	
such	as	Windows	Active/X	controls,	if	
such	functionality	is	more	desirable	
than	full	platform	portability.	So	far,	

About Genuitec
Genuitec, LLC is an Eclipse-based company offering innovative Java and J2EE development tools. It offers

training and expert consulting and development services for the Eclipse SDK and rich client platforms. A

sponsor of Eclipse Plug-in Central, Genuitec joined the Eclipse Foundation early in 2003 and is currently on

the board of directors, actively participating in the organization’s strategic development and direction.

Genuitec was founded in 1997 and is headquartered in Plano, Texas.

About MyEclipse
An innovative, comprehensive, and affordable Integrated Development Environment (IDE) for Java, J2EE,

and open standards technologies. MyEclipse Enterprise Workbench is a full-featured enterprise-class

platform and tool suite for developing software applications and systems supporting the full lifecycle of

application development. Facilities and features usually found only in high-priced enterprise-class prod-

ucts are included in MyEclipse, which extends the best practices and technology available from the latest

Eclipse 3.1 SDK. Based on open standards and the Eclipse platform, MyEclipse redefines software pricing,

support, and delivery release cycles by providing a complete application development environment for

J2EE, WEB, AJAX, XML, UML, and databases and the most comprehensive array of application server con-

nectors (25 target environments) to optimize development, deployment, testing. and portability.

49July 2006JDJ.SYS-CON.com

SWT	has	been	proven	on	the	Windows	
Win32	and	Pocket	PC,	Photon,	Motif,	
and	GNU	window	managers,	covering	
deployment	platforms	from	high-end	
workstations	to	embedded	devices.		
	 Although	the	Java	language	already	
contains	two	widget	toolkits,	AWT	and	
Swing,	the	Eclipse	group	still	chose	
to	implement	their	own.	The	detailed	
reasons	for	this	choice	can	be	found	
in	the	Eclipse	Overview	white	paper.	
However,	to	prove	that	this	was	the	
right	decision,	all	one	needs	to	do	is	
compare	the	look-and-feel	of	a	Swing	
or	AWT	application	of	your	choice	with	
that	of	Eclipse.	Eclipse	looks,	feels,	and	
responds	like	a	native	application	on	
whatever	platform	it’s	running	on.

User Interface Framework
	 To	build	a	graphical	interface,	SWT	
can	either	be	used	directly	or	through	
JFace,	the	user	interface	framework	of	
the	Eclipse	platform.	JFace	includes	
dialog,	preference,	progress	report-
ing,	and	wizard	frameworks	as	well	as	
image	and	font	registries	that	make	
user	interface	creation	very	straight-
forward.	
	 The	Eclipse	platform	supports	a	
multi-window,	MDI-like	user	interface	
presentation.	On	top	of	JFace	and	SWT	
the	Eclipse	workbench	provides	a	frame-
work	for	building	perspectives,	editors,	
and	views	that	provide	the	structure	for	
user	interaction.	Editors	handle	resource	
lifecycle	interactions	such	as	creating,	
editing,	saving,	and	deleting.	Views	
are	used	to	provide	supplementary	
information	about	an	object	with	which	
the	user	is	interacting.	Examples	include	
outline,	pending	tasks,	and	property	
views.	A	perspective	is	a	stacked,	tiled,	
or	detached	arrangement	of	views	and	
editors.	Only	one	perspective	is	visible	
in	a	window	at	a	time	but	you	can	open	
multiple	windows	to	view	multiple	
perspectives	simultaneously.

	 The	Eclipse	user	interface	frame-
work	is	extensive,	flexible,	and	
powerful.	And,	even	if	it	doesn’t	do	
everything	you	need,	it	can	easily	be	
extended	in	less	time	and	with	fewer	
resources	than	designing	and	building	
your	own.

Update Manager
Historically	one	of	the	biggest	prob-
lems	associated	with	applications	is	
the	support	cost	incurred	to	package,	
distribute,	maintain,	and	upgrade	
the	application	as	new	versions	are	
released.	This	cost	increases	when	a	
large	and	dispersed	user	community	
uses	the	application.	With	an	offering’s	

success	and	broad	deployment,	sup-
port	after	the	sale	can	become	time-
consuming	and	expensive.
	 Component	maintenance	and	
upgrade	facilities	were	part	of	the	
design	of	Eclipse	from	the	beginning.	
To	control	ongoing	cost	and	remove	
maintenance	issues	that	could	become	
barriers	to	project	development	and	
deployment,	the	Eclipse	platform	con-
tains	a	flexible	update	manager.	The	
update	manager	can	be	configured	
to	initially	install	new	components	or	
updates	to	existing	components	from	
a	remote	server.	As	you	release	new	
versions	of	your	application	or	add-on	
components,	distribution	can	be	as	

open source

 Figure 1 An “empty” Eclipse-based application

 Figure 2 GumTree

 Figure 3 Eclipse Trader

JDJ.SYS-CON.com50 July 2006

easy	as	packaging	them	using	Eclipse	
facilities	and	putting	them	on	your	
update	server.

Help System
	 Every	professional	desktop	applica-
tion	has	a	help	system	for	end	users	
and	Eclipse	is	no	different.	However,	
Eclipse’s	help	system	isn’t	simply	built	
from	a	static	group	of	HTML	files	
that	document	Eclipse.	Rather,	it’s	a	
framework	for	providing	both	search-
able	and	context-sensitive	help	that’s	
open	to	extension	by	documentation	
plug-ins.	As	a	result,	for	any	applica-
tion	built	on	Eclipse,	everything’s	
available	for	constructing,	packaging,	
and	shipping	a	complete,	custom,	
context-sensitive	help	system	without	
buying	third-party	tools.

Using Eclipse as an Application
Framework
	 So	starting	with	the	underpinnings	
of	a	Java	IDE	as	an	application	frame-
work	may	at	least	sound	possible,	but	
why	would	anyone	do	it?	Well,	Eclipse	
satisfies	the	full	function	and	facili-
ties	wish	list	mentioned	earlier,	while	
providing	the	program	development	
environment	for	building	the	project	
as	a	series	of	Eclipse	plug-ins.	At	the	
outset	the	frameworks	provide	an	
empty,	featureless	application	that	
is	architecturally	sound,	extensible	
for	future	enhancements,	and	can	
upgrade	itself	remotely.
	 The	main	question	then	becomes	
how	much	of	Eclipse	is	required?	
Simply	stated,	an	application	can	
be	built	on	the	Eclipse	framework	
by	removing	functionality	that’s	not	
important	and	adding	functionality	
that	is.	The	more	challenging	part	is	
where	to	begin.	The	easiest	cases	are	
in	the	extremes.	For	example,	when	
building	a	commercial	IDE,	like	we	do	
with	MyEclipse	Enterprise	Work-
bench,	it	makes	sense	to	start	with	the	
complete	Eclipse	Platform	download,	
as	well	as	a	few	other	Eclipse	projects,	
and	build	on	top	of	them.	At	the	other	
extreme,	when	building	an	application	
for	an	embedded	device	or	any	other	
environment	where	size	constraints	
are	paramount,	then	either	Equinox	or	
eRCP	would	make	a	more	reasonable	
starting	point.	If	the	deployment	target	
has	a	few	more	resources,	but	still	

don’t	require	the	vast	majority	of	the	
platform’s	features	then	using	the	RCP	
(available	from	the	platform	download	
page)	as	the	primary	framework	is	
likely	the	right	starting	point.	With	a	
little	configuration	on	the	base	RCP	
you	can	quickly	set	up	an	“empty”	
application,	as	shown	in	Figure	1,	and	
then	concentrate	on	adding	only	what	
adds	value,	rather	than	infrastructure.
	 Once	the	starting	platform	has	been	
determined,	building	an	application	
is	simply	a	matter	of	writing	plug-ins	

to	add	features	to	the	basic	Eclipse	
framework	and	branding	them	ap-
propriately	for	the	intended	audience.	
For	example,	a	large	application	is	
typically	written	as	multiple	custom	
perspectives	and	supporting	views	
using	many	plug-ins.	Alternatively,	
to	integrate	a	suite	of	small	applica-
tions,	perhaps	each	one	can	be	a	single	
perspective	in	its	own	plug-in.	Along	
those	lines,	Eclipse	can	also	be	used	as	
a	portal	to	integrate	all	of	a	company’s	
homegrown	applications.	The	possibil-

open source

 Figure 4 Azureus

 Figure 5 Qanyon World Factbook

JDJ.SYS-CON.com52 July 2006

ities	are	truly	endless.	And,	just	to	
prove	the	point,	here’s	a	very	wide	
assortment	of	Eclipse-based	ap-
plications	from	all	over	the	world.
	 GumTree	is	an	Open	Source	
graphical	user	interface	framework	
for	building	scientific	instrumenta-
tion	consoles	as	shown	in	Figure	2.
	 EclipseTrader	is	an	Open	Source	
set	of	plug-ins	for	the	Eclipse	RCP	
dedicated	to	the	building	of	an	
online	stock	trading	system,	featur-
ing	shares	price	watching,	intra-day	
and	historical	charts	with	technical	
analysis	indicators,	level	II/market-
depth	views,	news	watching,	and	
integrated	trading.	The	main	view	is	
depicted	in	Figure	3.
	 Azureus	implements	the	Bit-
Torrent	client	protocol	through	
Eclipse	RCP	plug-ins	and	comes	
bundled	with	many	invalu-
able	features	for	both	beginners	
and	advanced	BitTorrent	users.	
Azureus	is	typically	one	of	the	
most	downloaded	applications	at	
SourceForge	and	interface	looks	
native	on	any	platform,	thanks	to	
SWT,	as	shown	in	Figure	4.
	 Qanyon	World	Factbook	applica-
tion	was	written	to	explore	using	
Eclipse	RCP	in	a	distributed	envi-
ronment.	Similar	to	the	CIA	World	
Factbook	web	site,	the	Qanyon	World	
Factbook	should	display	country	
information,	albeit	in	a	rich	client	
environment,	as	shown	in	Figure	5.

Going Forward –
What’s Next for Eclipse?
	 Eclipse	is	continuously	evolving	
and	will	continue	to	grow	both	
vertically	further	into	the	software	
tools	space	and	horizontally	into	
completely	new	market	segments.	
Interestingly,	the	growth	into	new	
industry	verticals	will	be	for	the	
same	reasons	that	Eclipse	was	
formed	in	the	first	place.	Although	
Eclipse	was	initially	formed	to	
build	an	integration	platform	for	
software	tool	providers,	the	sepa-
rate	availability	of	the	RCP	changes	
everything.	Rather	than	being	
a	platform	exclusively	for	tool	
providers,	Eclipse	has	become	a	
general-purpose	platform	that	has	
simply	been	leveraged	initially	in	
the	software	tools	arena.	With	this	
seminal	change,	Eclipse	will	begin	

drawing	participants	from	other	
verticals	who	want	to	cooperate	
in	the	same	way	that	the	current	
group	of	tool	providers	has.	In	the	
near	future	I	expect	to	see	interest	
in	building	infrastructure	for	pro-
ductivity	applications,	reporting	
tools,	security,	process	work-
flow,	and	business	intelligence	
among	others.	Now	that	Eclipse	
is	completely	open	and	inclusive	
across	the	entire	software	industry,	
its	membership	and	growth	will	
explode	in	the	coming	years.
	 Another	vehicle	of	Eclipse’s	
future	growth	will	likely	come	from	
completely	outside	the	software	
industry.	Consortia	from	such	
diverse	industries	as	healthcare,	
automotive,	and	finance	regularly	
set	software	platform	and	interop-
erability	standards.	However,	
without	a	portable,	cross-platform	
implementation	of	the	standards,	
each	consortium	member	must	
independently	construct	its	own,	
solely	based	on	the	industry	speci-
fications.	This	tremendous	duplica-
tion	of	work	is	both	expensive	
and	error-prone.	Collaborating	on	
building	a	common	set	of	speci-
fication-compliant	infrastructure	
would	universally	cut	costs			while	
insuring	interoperability.	But	what	
competitors	require	before	they	can	
cooperate	is	a	level	playing	field	
that	benefits	all	of	them	equally.	
When	they	begin	to	research	their	
options,	they	will	find	that	Eclipse’s	
maturity,	extensibility,	and	royalty-
free	redistribution	model	is	very	
attractive	as	the	base	for	their	col-
laborative	development	efforts.
	 Eclipse	is	constantly	expand-
ing,	evolving,	and	surprising	all	of	
us.	So	much	so	that	it	would	have	
been	impossible	to	envision	where	
it	has	gone	in	its	first	few	years	
of	existence.	And,	going	forward,	
doing	a	reasonable	job	predicting	
what	is	next	for	Eclipse	seems	just	
as	difficult.	There’s	only	one	thing	
for	certain;	the	future	is	arriving	
every	day	and	no	one	really	knows	
what	it	holds.	Software	visionary	
Alan	Kay	once	said,	“The	best	way	
to	predict	the	future	is	to	invent	it.”	
And,	whatever	the	“next	big	thing”	
is,	one	thing	is	increasingly	likely;	
it	will	be	built	on	Eclipse.		

“Eclipse is constantly
expanding, evolving,
and surprising all of us.
So much so that it
would have been
impossible to envision
where it has gone in
its first few years
of existence”

53July 2006JDJ.SYS-CON.com

’m	going	to	share	my	experience	of	enabling	a	graphics-
oriented	GIS	visualization	module	with	a	C++	rendering	
engine	for	a	Java	desktop	application	using	JNI	technol-
ogy.	
The	solution	was	implemented	in	the	GIS	library	Ter-

raLib	as	part	of	the	TerraLib	Develoment	Toolkit	(Tdk),	apply-
ing	a	JNI-bridged	drawing	canvas	as	part	of	the	Components	
API	used	by	the	rendering	engine.	
	 The	solution	gave	the	Java	desktop	application	visual-
ization	module	a	native	equivalent	performance	and	saved	
a	lot	of	duplicative	effort	in	natively	implemented	render-
ing	functionalities	that	could	be	accessed	by	the	Java	
application	layer.	It	also	promoted	full	integration	between	
the	GIS	visualization	module	and	the	application	control	
peer.	
	 First	I’ll	present	the	architecture	and	then	discuss	how	
JNI	can	be	a	great	solution	for	a	well-designed	native	layers	
integration.	I’ll	also	present,	throughout	the	text,	some	
third-party	solutions	currently	available,	giving	references	
and	links	for	more	information	on	this	still	challenging	mat-
ter.

The Architecture
	 The	TerraLib	Development	Kit	–	Tdk	–	core	is	entirely	writ-
ten	in	C++.	It	consists	of	a	framework	to	make	GIS	develop-
ers’	experience	with	TerraLib	easier.	As	a	proof	of	usage	for	
Tdk,	a	visualization	tool	called	VIPE	(Visualization,	Interac-
tion,	Printing,	and	Editing)	was	successfully	built	with	the	
Tdk	API.	This	native	version	of	the	application	is	quite	stable	
and	designed	over	an	event-oriented	model.	As	we’ll	discuss	
later	this	was	a	key	factor	in	the	proposed	solution.	I	took	
advantage	of	that	existing	design	and	had	the	two	mixed	lan-
guage	control	layers	communicating	through	JNI.	The	other	
JNI	touching	point	was	restricted	to	the	data	layer	to	provide	
native	data	state	management	directly	from	the	correspond-
ing	Java	data	layer.	The	latter	became	a	very	thin	layer	since	
it	only	holds	the	state	management	operators	(accessor	and	
mutator	methods)	and	the	JNI	bridge	to	access	the	corre-
sponding	native	data	container	effectively	holding	the	data	
(see	Figure	1).

Some Relevant Implementation Details
	 One	very	important	implementation	detail	was	the	need	
to	have	the	rendering	take	place	on	the	native	visualization	
layer	where	the	data	was	formally	accessible.	But	the	user	
experience	is	actually	with	a	JPanel	instance.	That	made	us	
take	the	risky	strategy	of	keeping	the	C++	and	Java	control	
layers	communicating	by	sending	application	state	control	
and	visualization	UI	events	and	finally	applying	the	Bridge	
pattern	on	the	Canvas	component	to	enable	the	native	ren-
dering	logic	control	over	the	Java	Graphics2D-based	render-
ing	engine.
	 The	Java	control	layer	simply	delegates	the	UI	events	over	
to	the	native	layer,	which	in	turn	does	the	response	callbacks	
to	the	Java	Bridge	through	a	jobject	proxy.	See	Listing	1.
	 We	ended	up	with	JVIPE	(Java	VIPE)	having	equivalent	per-
formance	to	the	C++	version	saving	development	duplication	
related	to	rendering	the	Maps	and	Cartographic	elements	
–	to	mention	a	few.	What	we	do	now	is	implement	first	in	C++	
and	bridge	it	to	Java.	The	single	data	cache	was	also	a	major	
achievement	because	it	wasn’t	possible	with	the	previous	
solution	using	CORBA.	We	basically	succeeded	on	perfor-
mance	and	memory	allocation	too.	The	client	application	
inherited	JVIPE	functionalities	through	the	Tdk	Java	API	and	
is	currently	in	production.	
	 The	drawback	is	still	the	unavoidable	conversion	of	the	
geometry	native	data	types	to	Java	for	plotting.	I’m	currently	
checking	JDK1.4	NIO	features	for	the	vector	data	blocks’	na-
tive	access	to	the	raster	data	types	whose	conversion	is	also	
very	costly.

JNI Analysis
	 Looking	back	at	the	process	that	resulted	in	this	successful	
solution	I	can	risk	some	conclusions	to	pass	on	to	those	will-
ing	to	embrace	JNI	or	analyze	it	against	some	other	technolo-
gies.

Native Code Access from Java Analysis
	 The	first	question	that	we	have	to	answer	before	deciding	
to	use	JNI	is	when	should	we	try	to	access	native	code	in	a	
Java	development	scenario?	

Mário de Sá Vera is

a software architect

and works as an IT

consultant in Brazil.

desavera@

netscape.net

I
Mário de Sá Vera

A JNI-bridged Java
Desktop Application
Native Performance and Java Control – Bridging Domain Gaps

JDJ.SYS-CON.com54 July 2006

	 The	answer	isn’t	as	obvious	as	you	may	think.	Code	reuse	
is	a	questionable	issue.	Moving	to	a	modern	programming	
language	will	usually	be	a	worthy	move		it	because	new	
language	efforts	usually	gather	technological	improvements	
together	and	get	rid	of	past	mistakes.	Experience	says	that	
old	libraries	will	eventually	be	migrated	to	modern	languages	
to	be	continued	and	improved.	So	the	question	becomes,	
what	kind	of	native	code	should	we	directly	access	against	a	
rewrite	approach?	
	 That	question	is	a	little	simpler	to	answer.	To	answer	it	I’ll	
risk	generalizing	two	answers	taken	from	a	design	decision:
1.	Integration	demands	combined	with	manpower	or	time	

frame	limitations	for	rewriting	the	existing	code	in	Java	
(legacy	case)

2.	Java	considerations	for	getting	an	adequate	solution	as	a	
whole	(scratch	time	case)	

	 We	also	mustn’t	forget	that	not	all	that’s	written	in	a	legacy	
native	code	can	be	accessed	by	Java.	Generally	speaking	I’d	
say	that	the	best	candidates	for	being	kept	or	developed	in	
native	code	beforehand	would	be	modules	that	implement	
functionalities	that	Java	has	trouble	with.	I	mean	mostly	
time-consuming	code	where	Java	performance	misses	
(despite	JITs,	we’re	still	buying	new	hardware,	folks,	and	with	
new	hardware	the	native	code	will	run	faster!)	
	 Now	that	we	have	some	idea	of	when	to	bring	a	tower	of	
Babel	to	our	code,	let’s	analyze	some	technologies.

The JNI Choice
	 From	my	point	of	view	the	first	analysis	to	do	in	deciding	
to	use	any	technology	is	its	applicability	to	the	situation.	It’s	a	
good	approach	considering	we’ll	make	serious	mistakes	us-
ing	a	technology	inadequate	to	our	situation.	So	we	could	ask	
ourselves	if	JNI	is	really	the	right	technology	to	access	native	
code	from	Java.	
	 JNI	is	a	standard	Java	API.	By	definition	Java	demands	
native	resources	access.	Different	technologies	could	replace	
JNI	however.	I’ve	seen	some	sites	analyzing	CORBA	pros	and	
cons	against	JNI,	and	COM	has	been	a	choice	for	Microsoft	
solution	providers.	But	it’s	best	to	analyze	the	situation	you’re	
trying	to	apply	the	technology	to	and	then	decide	if	it	makes	
sense.
	 The	first	candidate	to	bridge	the	two	worlds	was	CORBA	
since	its	IDL-based	specifications	provide	language	inde-
pendence	and	we	could	take	advantage	of	the	client/server	
technology	to	create	a	distributed	version	of	the	application.	
After	a	couple	of	weeks	of	implementing	a	CORBA	middle	
layer	we	ended	up	rewriting	the	caching	model	multiple	
times	and	wound	up	with	very	poor	performance	and	a	du-
plicated	cache	(the	data	was	loaded	first	into	the	native	layer	
and	then	into	the	Java	visualization	layer).	All	these	problems	
basically	stemmed	from	the	separate	processes	scenario	
that	CORBA	–	and	any	other	inter-process	(IPC)	technology	
–	brings	in.	That	recommended	JNI	as	the	middle	layer.

JNI Considerations
	 Accessing	external	modules	written	in	a	language	differ-
ent	from	the	main	routine	isn’t	new	to	most	readers.	Most	
languages	carry	that	feature	along.	We	declare	some	known	
convention	for	method	prototyping	and	the	two	modules	

can	start	talking	at	runtime.	With	JNI	it’s	
no	different.	Sun’s	decision	to	use	C	as	
the	JNI	base	for	prototyping	was	quite	
adequate	since	most	languages	can	inte-
grate	with	C	code.	JNI,	though,	is	an	API	
and	requires	some	level	of	expertise	to	
be	programmed,	while	linking	C	code	to	
FORTRAN	is	a	link	time	task	and	can	be	
done	with	only	slight	understanding	of	
your	compiler	directives.	In	JNI	the	glue	
must	be	programmed.
	 	JNI,	as	an	API,	offers	flexibility	but	
requires	some	education	to	use	though	
it’s	not	too	steep	of	a	learning	curve.
	 There	are	some	products	and	tools	that	
can	be	used	to	help	make	the	JNI	experi-
ence	simpler.	One	major	effort	is	Noodle	
Glue	–	also	a	Bridge	pattern-oriented	solution	that	works	as	a	
bridger	to	the	native	class	to	automatically	generate	a	Java	wrap-
per.	It’s	sophisticated	and	robust,	and	was	being	open	sourced	
when	last	seen.	The	other	is	JNIWrapper,	the	apparent	propri-
etary	market	leader	so	far,	which	follows	more	of	an	Adapter	
pattern	model	in	that	it	tries	to	adapt	some	native	types	so	you	
can	access	native	resources	through	direct	method	calls.
	 Another	painful	experience	is	debugging	in	JNI.	
I	found	ETNUS,	a	JNI	IDE	where	you	can	debug	Java	code	
and	native	code	in	the	same	environment,	but	it	will	cost	you	
some	extra	bucks.	However,	the	context	switching	between	
Visual	Studio	and	Eclipse	can	be	really	painful.	We	explored	
some	hardcore	turnarounds	like	using	the	“_asm	int	3”	
interruption	call	on	Visual	Studio	so	that	we	could	force	an	
interruption	call	but	that’s	not	elegant.

Conclusion
	 At	this	point	I	hope	I’ve	convinced	you	folks	that	JNI	is	
definitely	the	right	choice	for	native	code	access	from	a	Java	
desktop	application	in	the	scenarios	involving,	say,	graph-
ics	and	numerics	in	general.	CORBA	causes	headaches,	for	
example,	not	being	able	to	bind	to	the	ORB	because	of	a	local	
host	Naming	Service	misconfiguration.
	 JNI	overcomes	limitations	in	Java	solutions,	especially	
performance.
	 Another	insight	we’ve	had	is	that	accessing	a	native	ap-
plication	through	some	inter-process	technology	doesn’t	
benefit	much	from	knowing	other	designs.	In	JNI	this	is	a	
tighter	conversation.
	 Legacy	code	should	be	well	designed	for	access	through	JNI.
	 If	your	legacy	code	isn’t	modularized,	it	will	very	hard	to	
access	cleanly	from	Java	or	from	other	languages.	The	solu-
tion	proposed	in	the	JVipe	scenario	was	only	possible	due	to	
the	well-designed	event-oriented	native	layer.
	 So	I	take	the	current	number	of	solutions	coming	out	as	
motivation	as	industry	jumps	on	JNI	support.	Let’s	hope	for	
more	JNI	support	from	IDE	vendors.	 	

References
•	TerraLib	-	www.terralib.org	
•	NoodleGlue	-	www.noodleglue.org
•	JNIWrapper	-	www.jniwrapper.com
•	ETNUS	–	www.etnus.com	

 Figure 1 JNI touching points
Diagram 1 JNI touching points

Presentation Layer

Control and Visualization
Layer

Data Layer

Access Layer

55July 2006JDJ.SYS-CON.com

Listing 1

class TdkCanvas {

 //...

 public void plotLine(TeLine2D& line) = 0;

 //...

}

class TdkJNICanvas : public TdkCanvas

{

public:

 // constructor expects the bridged TdkSwingCanvas instance

 TdkJNICanvas(JNIEnv *env, jobject *jThis);

 //...

 public void plotLine(TeLine2D& line);

 //...

private:

 JavaVM *jvm_; //Stores the Java virtual

machine

 jobject objCanvas_; //Stores the Java´s TdkSwingCanvas

instance

}

void TdkJNICanvas::plotLine(jobject& line)

{

 //Gets the current environment

 JNIEnv *env = getCurrentJAVAEnv(jvm_);

 jclass clsCanvas = env->GetObjectClass(objCanvas_);

 //Get the plotLine method ID

 jmethodID metCanvas = getMethodID(env, clsCanvas,

 “plotLine”, “(Ltdk/

core/geometry/TeLine2D;)V”);

 //Runs the method

 env->CallVoidMethod(objCanvas_, metCanvas, line);

}

//-------------

package tdk.graphics;

interface TdkCanvas {

 void plotLine(TeLine2D line);

}

public class TdkSwingCanvas implements TdkCanvas {

 //...

 private Graphics currGraphics_;

 //...

 public void plotLine(TeLine2D line) {

 //...

 // all geoms are Graphics2D Shape compositions

 currGraphics_.draw(line.getShape());

 //...

	

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher fails
to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of the
cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is
fully responsible for all financial liability and terms of the contract executed by the agents or agencies who are
acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to change by
the Publisher without notice. No conditions other than those set forth in this “General Conditions Document”
shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content of their
advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Pub-
lisher. This discretion includes the positioning of the advertisement, except for “preferred positions” described
in the rate table. Cancellations and changes to advertisements must be made in writing before the closing date.
“Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Quest www.quest.com/JavaCode 2

 Altova www.altova.com 978-816-1600 4

 IBM ibm.com/takebackcontrol/flexible 7

 Intersystems www.intersystems.com/Cache17P 617-621-0600 9

 Fiorano www.fiorano.com/downloadsoa 800-663-3621 13

 OPNET www.opnet.com/pinpoint 240-497-3000 19

 Roaring Penguin www.roaringpenguin.com 613-213-6599 23

 RogueWave Software www.roguewave.com/developer/downloads 27

 Real World Flex Seminar www.flexseminar.com 201-802-3020 31

 Tibco www.tibco.com/mk/gi 800-420-8450 35

 LinuxWorld Conference & Expo www.LinuxWorldExpo.com 37

 iTVcon www.iTVcon.com 201-802-3023 45

 EclipseWorld Conference & Expo www.eclipseworld.net 415-785-3419 51

 Northwoods www.nwoods.com 800-434-9820 53

 Instantiations www.instantiations.com/rcpdeveloper 800-808-3737 57

 AJAXWorld Conference & Expo www.AjaxWorldExpo.com 201-802-3020 58,59

 SoftwareFX www.softwarefx.com 63

 Parasoft www.parasoft.com/JDJmagazine 888-305-0041x3501 64

JDJ.SYS-CON.com56 July 2006

STAND ON THE
SHOULDERS OF GIANTS

RCP Developer

RCP Developer™

SWT Designer™

RCP Developer™

 WindowTester™ RCP Packager™

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

y	nature	Web	Services	is	a	dis-
tributed	technology.	With	dis-
tribution	comes	great	flexibility	
for	architectural	topologies.	

Components	can	be	strategically	placed	
in	different	physical	locations	to	opti-
mize	performance,	maintenance	and	
business	processes.	In	large	organiza-
tions	one	physical	location	may	handle	
sales	services,	while	another	delivers	
contract	management.	As	organizations	
build	Service	Oriented	Architectures	
that	stitch	together	these	physically	
dispersed	services,	distributed	develop-
ment	becomes	an	interesting	challenge	
to	overcome.	Many	collaborative	tech-
nologies	exist	today	to	facilitate	better	
communications	and	information	shar-
ing	among	workers,	but	it’s	rare	to	find	a	
distributed	development	environment.
	 Enter	Mindreef	SOAPscope	Server.	
SOAPscope	Server	is	a	development	
platform	that	provides	a	centralized	
work	environment	designed	specifi-
cally	for	SOAs	enabled	by	Web	Services.	
Development	teams	collaborate	in	spe-
cialized	virtual	workspaces	that	manage	
Web	Services	definitions,	messages,	re-
corded	actions,	simulations,	and	notes.

The Development Environment:
Creating Workspaces
	 Mindreef	SOAPscope	Server	is	
based	on	the	concept	of	workspaces.	
As	mentioned,	workspaces	are	central	
repositories	that	contain	the	assets	of	
a	given	Web	Services-enabled	project.	
There	are	three	kinds	of	workspaces:
1.	Private	–	All	assets	in	private	work-

spaces	are	accessible	only	to	the	
logged-in	user	

2.	Team	–	Assets	in	team	workspaces	
are	accessible	to	any	logged-in	user

3.	Community	–	Community	work-
space	assets	are	available	to	any	
user	in	a	read-only	state,	and	
an	editable	state	to	those	with	
accounts	on	the	server

	 As	an	example,	assume	that	an	or-
ganization	has	separate	physical	loca-
tions	for	sales,	contract	management,	
and	master	data	services	(customer,	
product,	etc.).	The	support	teams	and	
developers	of	these	individual	services	
are	also	located	in	different	physical	
locations.	As	part	of	an	effort	to	im-
prove	ties	with	its	trading	partners,	this	
company	is	building	an	application	so	
buyers	can	submit	price	checks	and	
purchase	orders	using	Web	Services.	
During	development	a	workspace	will	
be	created	in	the	team	area.
	 When	establishing	a	workspace	in	
Mindreef	SOAPscope	Server,	develop-
ers	add	WSDL	definitions	referred	to	as	
service	contracts.	As	shown	in	Figure	
1,	service	contracts	can	be	added	to	a	
workspace	via	either	a	URL	or	a	WSDL	
file	located	on	the	file	system.	Service	
contracts	can	also	be	added	from	the	
developer’s	other	private	workspaces,	
and	from	all	team	and	community	
workspaces.	For	this	example,	the	
ContractService	and	SalesService	
WSDL	files	will	be	added.
	 With	the	service	contracts	loaded,	
SOAPscope	Server	presents	them	to	
developers	in	multiple	views:
•	 Overview	–	Displays	the	details	

of	a	specific	service	contract	as	a	
tree	structure.	Each	operation	is	
an	expandable	node	on	the	tree	in	
which	the	operational	details	are	
stored	including	actions	and	input	
and	output	message	constructs.

•	 Documentation	–	Lists	all	of	the	
components	of	the	Web	Service	by	
namespace.

•	 Files	–	Displays	the	XML	files	that	
make	up	the	Web	Service	definition	
in	a	formatted	view.

•	 Coverage	–	A	general	listing	of	usage	
statistics	for	a	given	service.	Metrics	
captured	here	include	total	calls,	
faults,	call	duration,	request	size,	
and	response	size.

	 From	these	views,	services	can	be	
invoked,	analyzed,	or	updated,	and	
multiple	services	can	be	compared	to	
identify	differences	in	their	definitions.	
The	developer	can	also	analyze	ser-
vices	for	best	practices.	The	choices	of	
algorithms	to	run	are	Mindreef	Basic	
Diagnostics,	WS-I	Basic	Profile	1.0,	and	
a	combination	of	the	WS-I	Basic	Profile	
1.0	and	SOAP	Binding	Profile	1.0.	Users	
have	the	option	of	creating	their	own	
algorithms	from	a	library	of	tests.

Testing & Verifying Services
	 Every	time	a	developer	invokes	a	
Web	Service	from	a	workspace,	the	
request	and	response	messages	are	
captured	and	the	event	is	stored	as	
an	action.	This	serves	as	a	powerful	
mechanism	for	testing	and	debug-
ging.	When	issues	with	a	service	are	
identified,	the	messages	that	produce	
the	issue	can	be	stored	and	re-sent	to	
verify	that	the	appropriate	collective	
actions	have	been	taken.
	 Individual	actions	can	also	be	strung	
together	to	create	scripts.	This	provides	
for	testing	dependent	services.	Web	
Service	parameters	can	be	configured	
to	extract	their	values	from	variables	
allowing	for	the	results	of	one	service	
to	serve	as	the	input	to	another.	For	the	
example	in	this	article,	the	ContractSer-
vice.GetContractPrice	has	been	config-
ured	to	put	its	results	in	variables.	The	
values	include	contract	number	and	
price.	Subsequently,	the	SalesService.
SubmitPO	operation	has	been	config-
ured	to	extract	the	contract	number	
and	price	from	the	configured	variables	
completing	the	chain	of	operations.

Collaboration
	 All	of	the	features	of	Mindreef	
SOAPscope	Server	mentioned	so	far	
are	valuable	and	serve	to	assist	with	
developing	and	testing	Web	Services.	
However,	SOAPscope	Server’s	differen-

product reView

Brian Barbash

Mindreef
SOAPscope Server

B
The rare distributed development environment

Brian R. Barbash is

the product review

editor for Web Ser-

vices Journal. He is a

senior consultant and

technical architect for

Envision Consulting,

a unit of IMS Health,

providing management

consulting and systems

integration that focuses

on contracting, pricing,

and account manage-

ment in the pharma-

ceutical industry.

JDJ.SYS-CON.com60 July 2006

tiating	functionality	is	in	its	ability	for	teams	
to	collaborate	on	Web	Service	development.	
Features	of	the	system	that	facilitate	this	
include:

•	 Workspace	Notes	–	Notes	in	a	work-
space	provide	a	way	to	document	
activities,	changes,	issues,	and	other	
useful	information	to	members.	For	
example,	if	an	issue	is	identified	with	the	
ContractService,	the	action	that	re-creates	
the	error	and	the	specific	inputs	that	are	
associated	with	it	may	be	documented	
as	a	note.	Members	of	the	maintenance	
team	for	the	ContractService	now	have	a	
centralized	documentation	repository	to	
identify	and	resolve	the	issue,	a	location	
into	which	the	resolution	may	be	entered,	
and	an	action	script	to	re-create	and	diag-
nose	the	issue	at	hand.

•	 RSS	News	Feeds	–	These	feeds	provide	
information	about	the	workspace	and	the	
notes	entered.	RSS	feeds	always	include	
the	first	and	last	note	entered	in	the	
workspace.	So	teams	that	consume	ser-
vices	in	a	workspace	may	be	notified	by	
RSS	when	changes,	updates,	or	issues	are	
resolved	in	the	workspace.

•	 SOAPscope	Server	Integration	
–	SOAPscope	Server	lets	workspaces	be	
exported	to	a	proprietary	format	called	
a	Mindreef	Reproducible	Package.	These	
packages	can	be	transferred	to	any	
SOAPscope	Server	server	with	all	assets	
intact.	Packages	can	also	be	stored	in	
alternate	systems,	such	as	bug	tracking	
tools,	for	archiving	and	reference.

Simulation
	 Simulation	in	SOAPscope	Server	refers	to	
the	practice	of	creating	dummy	messages	
that	serve	as	placeholders	for	Web	Services.	
This	is	particularly	useful	during	the	devel-
opment	of	composite	applications	and	pro-
totyping	where	not	all	services	are	available.	
During	a	simulation,	SOAPscope	Server	acts	
as	a	service	endpoint,	responding	with	the	
appropriate	message	template	based	on	the	
contents	of	a	request,	or	throwing	a	SOAP	
fault	when	no	matching	response	is	found.
	 Using	the	ContractService	a	new	opera-
tion	has	been	defined	called	GetEligibility.	
This	operation	will	determine	which	con-
tracts	a	given	customer	can	buy	on,	if	any.	
The	service	itself	has	yet	to	be	developed,	so	
a	simulation	will	be	created	for	this	specific	
operation.
	 As	shown	in	Figure	2,	the	simulation	for	
GetEligibility	will	be	based	on	the	value	of	
the	attribute	“name”	in	the	incoming	XML	
payload.	The	response,	shown	at	the	bottom	
of	the	screen,	is	a	hard-coded	XML	string	that	
represents	a	generic	eligibility	value.	Multiple	

simulations	can	be	created,	each	configured	
to	react	to	a	specific	payload,	to	accommodate	
different	business	cases	such	as	customers	
being	eligible	for	more	than	one	contract.	In-
voking	the	simulation	is	as	simple	as	sending	a	
request	from	the	service	client	to	the	endpoint	
defined	for	the	simulation.

Summary
	 Developing	Web	Services	components	in	
a	Services	Oriented	Architecture	presents	

unique	challenges.	Physical	distribution	of	
resources	adds	to	this	complexity.	Mind-
reef’s	SOAPscope	Server	platform	introduces	
an	interesting	solution	to	this	challenge	by	
providing	a	collaborative	work	environment	
that	goes	beyond	the	traditional	commu-
nication	functions.	The	system	can	play	
a	valuable	role	in	organizations	building	
out	new	services	and	supporting	existing	
applications.	SOAPscope	Server	is	definitely	
worth	a	look.	

 Figure 1 Adding a service contract

 Figure 2 Simulating a Response

61July 2006JDJ.SYS-CON.com

ast	month	I	introduced	to	you	the	winners	
of	the	4th	JCP	Program	Annual	Awards.	
But	the	story	is	only	half	told.	To	get	the	
full	picture	and	understand	how	tight	the	

competition	was,	I’m	inviting	you	to	meet	the	
runners-up	for	the	JCP	Program	awards	–	those	
who	came	very	close	to	winning	the	top	honors	
this	year.	They	are	among	the	top	performers	to	
watch	in	the	months	and	year	ahead.
	 JBoss	came	close	to	winning	in	the	JCP	Mem-
ber	of	the	Year	category.	The	company’s	active	
participation	in	the	community	was	noticed	
by	peers	and	juries.	JBoss	is	involved	in	a	wide	
range	of	JSR	efforts,	including	EJB	3.0,	Java	EE	
5,	and	Web	services	and	provides	input	and	
feedback	from	both	developer	and	user	angles.	
	 So	did	NTT	DoCoMo,	known	in	the	com-
munity	as	an	early	adopter	of	Java	technology	
for	handsets.	Winner	of	the	“Duke’s	Choice	
Award”	at	JavaOne	2005	for	its	Java	technology-
based	i-mode	FeliCa	service,	NTT	DoCoMo	
has	contributed	its	rich	expertise	in	running	
mobile	Java	services	to	many	of	the	Java	ME	
Expert	Groups	in	which	it	participates.
	 Sun	Microsystems,	the	original	creator	of	
the	Java	technology	and	specification	lead	
for	a	wide	range	of	JSRs,	was	also	a	runner	up	
in	this	category.	Working	with	other	commu-
nity	members,	Sun	recently	finalized	major	
simplifications	to	the	Java	enterprise	program-
ming	model	in	JSR	244,	Java	EE	5,	and	is	in	the	
process	of	revising	the	core	Java	specifications	
in	JSR	270,	Java	SE	6	(Mustang).	
	 A	strong	contender	for	the	winner’s	place	in	
the	Most	Innovative	Java	ME	JSR	category	was	
JSR	248,	the	first	of	two	specifications	devel-
oped	by	the	Mobile	Service	Architecture	(MSA)	
initiative,	a	group	of	14	major	mobile	industry	
players	represented	on	the	JSR	Expert	Group.	
The	spec	leads	are	from	Nokia	Corporation	
and	Vodafone	Group	Services.	The	focus	of	the	
JSR	is	to	specify	an	unfragmented,	backward-
compatible	application	development	platform	
that	supports	a	set	of	key	APIs	to	a	wide	variety	
of	features	provided	by	the	latest	mass	mar-
ket–oriented	handsets	and	mobile	networks	
today	and	in	the	near	future.	
	 Led	by	Motorola	and	BenQ	Corporation,	JSR	
253,	Mobile	Telephony	API	(MTA),	stood	out	
too	and	vied	for	top	honors.	The	specification	
enables	applications	to	incorporate	tele-

phony	features	and	controls	directly	into	their	
operation,	avoiding	the	need	to	pass	focus	
to	another	application.	One	example	of	this	
might	be	in	a	multi-player	game	that	allows	a	
voice	call	to	be	placed	to	other	players	in	the	
game	for	strategy	discussion	(or	taunting	the	
enemies).	Another	use	is	the	ability	to	incorpo-
rate	a	feature	such	as	calling	out	to	a	help	desk	
without	exiting	the	application.	
	 Another	contender	for	the	top	innovation	in	
the	Java	ME	category	was	JSR	281,	IMS	Services	
API.	This	API	enables	application	programmers	
to	easily	create	applications	offering	multime-
dia	communication	services	in	close	integration	
with	IP	Multimedia	Subsystem	(IMS)	accord-
ing	to	applicable	standards.	In	this	way,	IMS	
domain,	with	all	the	advantages	of	merged	
Internet	and	telco	technologies,	will	be	revealed	
to	the	broad	Java	ME	developer	community	
and	will	encourage	faster	adoption	of	the	IMS	
services	provided	by	the	wireless	networks.	
	 Currently	the	Spec	Lead	of	JSR	257,	Con-
tactless	Communication	API,	and	JSR	293,	
Location	API	2.0,	Jaana	Majakangas	of	Nokia	
Corporation	came	again	on	the	jury’s	radar	
screen	as	a	great	candidate	in	the	Outstanding	
Java	ME	Spec	Lead	category.	Jaana	has	been	a	
member	of	the	JCP	from	August	2003	and	has	
consistently	participated	in	JSR	development	
including	for	JSRs	218,	219,	257,	271,	and	293.	
	 Volker	Bauche’s	work	for	JSR	228,	Information	
Module	Profile	-	Next	Generation	(IMP-NG),	and	
co-spec	leadership	of	JSR	281,	IMS	Services	API,	
with	other	colleagues	from	BenQ	and	Ericsson	
brought	him	the	nomination	for	Outstanding	
Java	ME	Spec	Lead.	Bauche	works	in	the	R&D	
department	of	BenQ	Mobile	as	lead	of	a	team	
specializing	in	middleware	projects.	
	 On	the	JSR	watch	list	o	f	developers	around	the	
world,	JSR	244,	Java	EE	5,	was	a	natural	candidate	
for	the	top	place	in	the	Most	Innovative	Java	SE/EE	
JSR	category.	The	JCP	EC	votes	put	it	in	the	runner-
up	race	for	all	the	right	reasons.	Java	EE	5	is	the	most	
significant	release	of	the	Java	EE	platform	since	the	
first	version,	J2EE	1.2.	It	enhances	the	programming	
model,	making	it	much	easier	to	write	enterprise	
applications.	Java	EE	5	makes	extensive	use	of	Java	
language	annotations	to	simplify	the	declarative	
programming	style	of	Java	EE.	
	 Another	leading	specification,	JSR	220,	EJB	
3.0,	was	among	the	top	nominations	in	the	

Most	Innovative	Java	SE/EE	JSR.	Its	character-
istics	did	not	escape	the	JCP	EC	jury	as	highly	
innovative	in	a	number	of	ways.	It	is	the	first	
within	the	group	of	Java	EE	specifications	that	
takes	advantage	of	the	new	features	of	annota-
tion	metadata	and	parameterized	types	in	
Java	SE	5.	In	particular,	it	defines	a	strategy	for	
annotations	usage	subsequently	adopted	by	
JSR	244	for	the	Java	EE	Platform.	
	 Three	great	spec	leads	competed	for	the	top	award	
in	the	Outstanding	Java	SE/EE	Spec	Lead	group.	
	 Jose	R.	Cronembold	is	a	senior	development	
manager	at	Oracle	Corporation.	He	designed	and	
implemented	the	Oracle	JDeveloper’s	IDE	frame-
work.	He	has	extensive	experience	in	developing	
IDEs.	In	addition	to	Oracle	JDeveloper,	he	has	
worked	on	two	other	IDEs:	UIMX:	a	C++	IDE	for	
developing	Motif-based	applications,	and	Visual	
Age	for	Basic:	a	Visual	Basic	compatible	IDE.	
Currently	he	is	an	observer	of	JSR	227,	A	Standard	
Data	Binding	and	Data	Access	Facility	for	J2EE.
	 Ed	Burns	has	worked	on	a	variety	of	Java	
Platform,	Standard	Edition	(Java	SE)	and	Java	
Platform,	Enterprise	Edition	(Java	EE)	projects	
in	roles	ranging	from	individual	contributor	
to	team	leader	to	architect.	He	co-authored	a	
book,	JavaServer	Faces:	The	Complete	Refer-
ence,	which	will	be	available	in	August	2006.	
	 Ed	got	involved	with	the	JCP	program	when	
he	became	co-Spec	Lead	of	JSR	127,	JavaServer	
Faces,	in	October	2002,	at	the	beginning	of	the	
JSF	development	life	cycle,	and	he	continued	
in	that	role	with	JSR	252,	JavaServer	Faces	1.2.	
	 Stefan	Hepper	works	for	the	IBM	develop-
ment	lab	in	Böblingen,	Germany,	and	he	is	
the	lead	architect	for	the	WebSphere	Portal,	
Workplace	Client	and	Server	programming	
model,	and	public	APIs.	He	co-led	the	Java	
Portlet	Specification	V	1.0	(JSR	168)	and	is	now	
leading	the	V	2.0	(JSR	286).	Stefan	also	started	
the	Pluto	project	at	Apache	that	provides	the	
reference	implementation	of	JSR	168.	
	 Join	me	in	congratulating	the	runners-up	and	
expect	more	exciting	projects	to	come	from	them	
in	the	months	ahead.	If	you	missed	my	column	
last	month	you	can	check	it	out	at	http://java.sys-
con.com/read/232104.htm,	and	meet	the	winners	
of	the	4th	JCP	Program	Annual	Awards.		

Onno Kluyt is the chairperson of the JCP Program Man-

agement Office, Sun Microsystems.

Jsr watch

Onno Kluyt

The 4th JCP Program
Annual Awards Runners-Up

L

JDJ.SYS-CON.com62 July 2006

